Consistent Hashing and Random Trees:
Algorithms for Caching in Distributed Networks
by
Daniel M. Lewin

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1998
(©) Massachusetts Institute of Technology 1998. All rights reserved.

ve VNG

R LSS

JUL 23158 TR

FFFFFF

Author Llan.&-fu -

Depértment of ElectficetFpemeeringand Computer Science
May 22, 1998

Certified by....oc.oopeenn.. .. e e, Bt
4 I . ;- Leig}ltgll

Professor of Applied Mathematics

| Thesis Supervisor

.........

David Karger
Associate Professor, of Computer Science

Zesis Supepvisor

Accepted by ...................... e e, PPN -
Arthur Smith
Chairman, Departmental Committee on Graduate Students

Certified by....... B O




WEppp—is TS PN



Consistent Hashing and Random Trees: Algorithms for
Caching in Distributed Networks
by

Daniel M. Lewin

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 1998, in partial fulfillment of the
requirements for the degree of
Master of Science in Computer Science

Abstract

In this thesis we develop the algorithmic foundation of a large scale distributed caching
system for the World Wide Web. In particular, we focus on developing hashing and
replication mechanisms that are robust under rapidly changing environments such as
the Internet. Two tools are developed: Consistent Hashing, a new hashing technique,
and Random Trees, a new replication and load balancing technique. We focus on
using rigorous mathematical methods to analyze the proposed algorithms so that
they may be applied in real systems with greater confidence.

This work was supported by the US Army through grant DAAH04-95-1-0 607 and by
DARPA under contract N00014-95-1-1246.

Thesis Supervisor: F. T. Leighton
Title: Professor of Applied Mathematics

Thesis Supervisor: David Karger
Title: Associate Professor of Computer Science



Acknowledgments

The author would like to thank Professor Tom Leighton for being such a supvortive
and enthusiastic advisor. In addition, the author would like to thank Tom Leighton,
David Karger, Eric Lehman, Rina Panigrahy, and Matt Levine for allowing the con-
tents of our joint work to appear in this thesis. Most importantly, I would like to

thank my lovely wife and kids for being there.



Contents

1 Introduction 8
1.1 TheProblem . .. ... ... ... . .. ... ... ... .. ..... 11
1.2 ASolution . . .. ... . .. ... ... 12
1.3 Basic Design: Monolithic vs. Distributed . . . . . . . ... ... ... 13

1.3.1 Some Existing Caching Systems . . . . . ... ... ... ... 15
132 OurModel. . . ... ... . ... . 17
1.4 Design Objectives and Complications . . . . . . ... ... ...... 19
1.5 Our Contribution . . . . . . .. .. ... ... ... .......... 21
1.5.1 Consistent Hashing . . . . .. ... ... ..., ........ 22
152 Random Trees. . . . .. .. ... ... ... ... ....... 24
1.6 PreviousWork . .. ... ... ... . ... ... ... . ..., 24
1.6.1 Previous Workon Hashing . . . .. .. .. ... ........ 24
1.6.2 Previous Work on Web Caching . . . . ... ... ....... 26
1.7 Structure of the Thesis . . . . . . ... ... ... ... ... ..... 27

2 Consistent Hashing 28

2.1 Practical Motivation . . .. ... ... ... ... .. ......... 29
2.1.1 Complications . . . . . ... ... ... ... ... .. ... 31
212 ASolution. ... ... ... .. .. ... 36

2.2 Consistent Hash Functions . . . . .. ... ... ... .......... 39
221 Hash Families . . . . ... ... ... .. ............ 39
22.2 Definitions. . . . ... ... ... L 41
223 A Consistent Hash Family . . . . .. ... ... ........ 47

5



2.2.4 A Practical Consistent Hash Family . . . . .. ... ... ...

2.2.5 Implementation . . . ... ... .................
2.2.6 A Different Adversarial Model . . . . . ... ... ... ....
2.2.7 Theory of Consistent Hashing . . . ... ... .........

3 Random Trees

3.1

3.2

3.3
3.4

3.5
3.6

Random Trees . . . . . ... ... ... ... . ... ... .....
311 Trees . . . . . ..
3.1.2 Complications . . . . . ... ... ... ... ... .. ...
3.1.3 A Solution - Random Trees . .. ................
OurModel . . . . .. . ... .
321 Components . . . .. ... .. ... ... ... .. ..
3.2.2 Types of Communication . . . . . ... ... ..........
3.23 Objective . . . .. .. .. ...
The Basic Random Trees Protocol . . . . . ... ... .........
Analysis of the Random Tree Protocol . . . . ... ..........
34.1 Latency ... .. ... ... . ... ...
342 Swamping . . ... ... ... ...
3.43 Storage . ... ... ... ...
Using Consistent Hashing . . . . . ... ... .............
Ultrametric . . . . . .. ... ... ... . ... . .
3.6.1 Protocol . . . ..

4 Conclusion

5 Appendix A

5.0.2 Chernoff Bounds

.........................

.........................

80
81
82
83
85
86
87
87
87
88
90
90
91
98

101
102
104

105

109



List of Figures

1-1 Schematic of basic caching system. . . ... .. ... ......... 14

1-2 A distributed caching architecture and a monolithic caching architecture. 16

1-3 A hierarchy of caches. . . . ... ... ... ... ........... 18
2-1 Hashing for balancing load in a simple caching system. . .. ... .. 30
2-2 How hashing distributes documents between servers. . . . . . . . . .. 32
2-3 What happens when you add a server with standard hashing. . ... 33
2-4 The basic construction of a consistent hash function. . . ... .. .. 37
2-5 Illustration of the monotonicity property. . . . . . . .. ... ... .. 43
2-6 'Transforming one view into another in two steps. . . . ... ... .. 44
2-7 An illustration of the spread property. . .. ... ........... 46
2-8 An illustration of the load property. . . . . .. ... ... ....... 47
2-9  An unlucky placement of buckets around the unit circle. . . ... .. 48
2-10 Using multiple points per-bucket in the circle hash function. . . . . . 50
2-11 An illustration of monotonicity for the circle hash function. . . . . . . 52
3-1 [Illustration of a tree of caches protecting a server. . . . . ... .. .. 82
3-2 Illustration of how a tree of caches replicatesdata. . . . . .. ... .. 84
3-3 Two random treesofcaches. . . . . . . . . ... ... ... ...... 85




Chapter 1

Introduction

In this thesis we develop and analyze algorithms for caching in large distributed
networks like the Internet. In particular, we develop algorithms for distributing data
over a set of caching machines and for later retrieving that data from the caches.
We concentrate on using rigorous mathematical methods to analyze the proposed
algorithms so that hopefully our work can be applied in the design of real world
caching systems with greater confidence.

The main contribution of this thesis is the introduction of two new algorithms,
one called consistent hashing, and another called random trees.

Consistent hashing is a new hashing scheme that is particularly well suited for
load balancing on the Internet. Typical hashing schemés, such as the classical az + b
(mod n) type of hashing, are a standard for assigning pieces of data (e.g. web pages)
to caches. The good thing about such standard hashing schemes is that they assign
roughly the same number of pages to each cache.

However, there are some serious drawbacks 1o using standard hashing in a dynamic
environment such as the Internet where the set of caching machines may change
frequently. Changing the set of caching machines amounts to changing the range of
the hash function (e.g. az + b (mod n) changes to ax + b (mod n + 1) when a new
cache is added). The crucial point is that when the range of a standard hash function
changes, the assignment of data to caches is completely reshuffeled.

Such a reshuffeling is a disaster for a caching scheme since the entire contents of



each cache is invalidated, or needs to be moved from machine to machine. Even worse,
is what happens when different users have different information about the current
state of the system. For example, two users may know about slightly different sets of
caching machines. With standard hashing techniques, these two users will not agree
on the placement of any data. If the system is very large (imagine millions of caches)
then such a situation is likely to occur for most users. That is, mostly users will have
slightly differing views of the set of caching machines. Using standard hashing in this
case means that nobody agrees on the placement of any data!

Consistent hashing is a new hashing technique that is designed to have the benefits
of standard hashing (easy to compute, distributes items evenly over buckets) and also
to react well to changes in the range of the function. Instead of every item changing
place when a bucket is added, only a minimal number of elements change place. If two
users have slightly different views of the set of active caches, their mapping of pages
to caches only differs by a little bit, whereas with standard hashing the mappings
would be totally different.

Consistent hashing is a good technique for assigning responsibility for caching
pages to a set of caches. However, if there are some extremely popular pages (known
as hot spots) then simply reassigning the page to a cache does not solve the whole
problem since the cache will be swamped for requests for the hot page. In order to
effectively cache a hot page, copies of the page need to be made and distributed to a
number of different caches. Then, requests for the page can be distributed between
these caches and thus eliminate the possibility of swamping any single cache. The
question is how and when to make copies and how to distribute request among the
copies once they have been made

Random trees, our second main algorithm, are a simple way to replicate data
according to its popularity. The basic idea is to embed in the network a random
replication tree with the home server for the information at the root. This replication
tree then serves as a mechanism for routing requests and making copies of information.
Each piece of data has a different (random) replication network. This guarantees that

the load of making and storing copies of information is distributed roughly evenly over



the set of caches. An important feature of the random tree protocol is that copies
of data are made before the data in fact become so popular that a cache could be
swamped. This feature is especially important in the Internet where a swamped cache
or server can be effectively cut-off from the rest of the network and thus unable to
“call for help”.

One of the key pieces of the random tree protocol is the use of a hash function
to distribute caching machines over the nodes of a tree. In a stable and known
environment, standard hashing would be a natural candidate for use in the protocol.
However, since the protocol is meant to work in the Internet, we use a consistent hash
function in place of the standard hashing scheme. The result is a caching algorithm
that can, at least theoretically, eliminate hot spots and balance load in the rapidly
changing environment of the Internet.

Other contributions of the thesis are methods for taking into account network
topology in the random trees protocol so that, say, a user at MIT does not go to a
cache in Japan to retrieve Harvard’s web page. In addition, we show how to minimize
the storage requirements of the caches in the protocol by a simple modification of the
random trees protocol.

We begin with a rather lengthly discussion of caching in networks that serves as
an anchor to the real world problem at hand. Note however, that the discussion
highlights the practical aspects that motivate our particular theory, ignoring many
other points that are relevant to designing a real life caching system. We wish to
warn the reader with a systems background that the following discussion is meant to
motivate our simplified model of the problem. Clearly, we do not describe all of the
systems issues involved in building a real cache. We believe that our model, although
lacking in many respects, still captures sufficient details of the problem so that our

algorithms will have real world applicability.

10



1.1 The Problem

As the World Wide Web becomes a dominant medium for information distribution,
mechanisms for delivering data over the Internet efficiently and reliably are needed.
However, as any current user of the web can attest, today’s data delivery methods are
prone to unpredictable delays and frequent failures. These delays and failures have
many causes, but three central ones are congested networks, swamped servers, and
physical distance.

Network congestion contributes to delay because packets traversing a congested
area of the network spend more time in router queues. They are also more likely to
be dropped, causing an expensive retransmission. In addition, network congestion
reduces the throughput that any one user experiences. Reduced throughput causes
increased delays in retrieving information.

Internet protocols are designed with various congestion control mechanisms in
place. However, network congestion is still commonplace because network infras-
tructure expansions cannot keep pace with the tremendous growth in Internet use.
For example, the network and routers around the large Internet exchange points are
frequently overloaded causing packets to be dropped and delays in retrieving infor-
mation.

Swamped servers contribute to delay because an overloaded server does not answer
requests when there is a lack of adequate resources on the server; for example memory
or network bandwidth. Since an overloaded server will ignore requests, some unlucky
clients get no response at all from the server. In addition, the lucky clients whose
requests are chosen to be served wait longer that they normally would because a
swamped server processes requests more slowly than a lightly loaded server. Thus,
every user suffers when they try to access information on a swamped server.

Servers can become swamped unexpectedly and without any prior notice. For
example, a site mentioned as the “cool site of the day” on the evening news may
have to deal with a ten thousand fold increase in traffic during the next day. This is

known as the “flash crowd” phenomenon and the server in such a case is called a “hot

11



spot”. One solution to the hot spot problem is to maintain enough servers to handle
peak loads. However, designing for peak load is not an efficient solution, especially as
the web grows. Imagine every web site having to maintain enough servers to handle
requests from every person in the world!

Physical distance is a cause of both delay and unpredictability while retrieving
information over the Internet. When the client and server are separated by many
thousands of miles, the communication latency between them can be many times
human perceptible time; even when the signal is traveling at the speed of light.! More
importantly, when the client and the server are distant, they usually communicate
over a myriad of intermediate networks that neither client nor server have control
over. If any of these intermediate networks malfunctions, communication is slowed
and sometimes stops altogether. Thus, physical distance is a contributor to the
familiar problem of unreliable and unpredictable access over the Internet.

Network congestion, swamped servers, and physical distance all contribute to the

fact that the current Internet is referred to as the “World Wide Wait”.

1.2 A Sclution

A general strategy that has been employed to improve the efficiency and reliability of
data delivery over the Internet is called Caching. The basic scheme is to place special
servers, called caches, at various points in the network. Information is replicated to
these caching machines and requests are then served by the caches instead of just by
the original server storing the information.

Caching can reduce network congestion if a cached copy is close (in the network
topology sense) to the requester since fewer network resources and links are used to
retrieve the information. Caching can help relieve the hot spot problem since some
of the requests that would normally be routed to the main server can be serviced by

the caches. Finally, if the caching machines are distributed uniformly throughout the

!Note that the speed of light is about halved in fiber, so without taking into account any router
delay, a round trip from coast to coast in the USA takes about 60,,, which is twice human perceptible
time. Of course, routers introduce an additional delay that can be many times this figure.

12



network then information in the caches is much closer to the end user than before.
Having information close-by in a cache removes the long trip over a congested and
unpredictable network.

Figure 1-1 (i) shows on example of the basic web caching scheme. In the example
there are users in Boston that every morning access a news site across the country,
say in San Francisco. The figure shows only six users, but imagine that there are a
thousand of them. In order to reach the site in San Francisco from Boston, packets
first traverse a local network, then a regional network to an Internet exchange point,
and then they cross an Internet backbone to reach San Francisco. In the morning, all
the one thousand people in Boston wake up and access the news site. A thousand re-
quests are transmitted to San Francisco, processed by the server at the news site, and
then a thousand copies of the news are delivered over the network back to the readers
in Boston. Notice that every user in Boston gets the news from across the country
and that the backbone carries 999 redundant copies of the same data. Moreover, the
server at the news site is responsible for serving all the one thousand requests.

Figure 1-1(ii) shows what happens when a cache is instalied in Boston. When the
first person wakes up (the early bird) and requests the news, the request is transmitted
to San Francisco in the usual way and the news is returned across the network.
However, this time a copy of the news is stored locally in the Boston cache. When
the other 999 people wake up and request the news, they get the information from the
local cache in Boston instead of from across the country. Thus, most users retrieve
their data locally; the network does not carry redundant traffic, and the news server
only has to serve one copy of the news for all of the readers in Boston. 'This simple
example shows how caching can reduce network congestion, relieve server load, and

reduce physical distance between users and servers.

1.3 Basic Design: Monolithic vs. Distributed

In this section we discuss the very basic architecture of the caching system that is

discussed in this thesis. On a cursory level, there seems to be a tradeoff between

13



Internet Backbone News Site

(i)

Internet Backbone News Site

r
.

Boston

(i)

Figure 1-1: (i) Multiple users in Boston access a news site across the country. Each
request is routed over the Internet to the news site server and then the news is sent
back to boston. Note that the same information is being transmitted many times
across the backbone, and that all of the users in Boston get their data from across
the country. (ii) When a cache is installed in Boston, the first user retrieves the data
from across the country, but all the other users in Boston get the information locally
from the cache. The cache prevents redundant traffic from crossing the Internet
backbone thus reducing network congestion. The news site server has to send data
once to Boston instead of multiple times, and users in Boston get the data faster and
more reliably then they did without the cache.

14



having a high hit rate in the cache and being in ciose proximity to all the users. For
example, say that there is a cache placed in every neighborhood of a city and that
users access the web through their local cache. Any item that is in fact stored in the
cache can be retrieved very efficiently since the data is coming from a very close-by
server. However, a hit only happens in the cache if two neighbors do in fact request
the same item twice. This may happen for very popular items, but is not likely to
occur for the vast majority of items. Therefore, the hit rate in the cache is likely
to be small and the reduction in network traffic negligible. Figure 1-2 (i) shows this
type of architecture.

On the other hand, if there is a single large cache for the whole city (which would
have to be a very large machine), then the hit rate is likely to be high since the
cache receives requests from a far greater population and the likelihood that two
users request the same item goes up. Such a “monolithic” cache does eliminate
more redundant traffic on the network outside the city than does the distributed
approach. However, the cache is physically located far away from most of the end
users. Figure 1-2 shows this type of architecture.

In summary: a distributed system keeps content very close to the user but could
have a small hit rate, while a monolithic system has a high hit rate but keeps content

farther away from the user and is a single point of failure.

1.3.1 Some Existing Caching Systems

In an attempt to both keep content close to users and also have a high hit rate, some
groups have proposed caching systems made up of a network of distributed caches
that act together as a single caching entity. In one such scheme [11], the caches can
be viewed as small machines that are distributed uniformly throughout the network;
like the neighborhood cache model discussed above. The difference is that when there
is a miss in the local neighborhood cache, the request is forwarded to all of the other
neighborhood caches, and if any of them have the requested data they ceturn it to
the user. This broadcast is done using a special Internet protocol called multicast [5]

that is designed to minimize network usage.

15



Intemet Backbone

Neighborhoods of Users

@)

Internet Backbone

Neighborhoods of Users

(i)

Figure 1-2: (i) A distributed caching architecture. Each neighborhood has a cache
that serves residents in that neighborhood. Note that the caches are very close to the
users so any content that is in fact located in the cache is retrieved very efficiently.
However, since any one cache only receives requests from a small set of users, the hit
rate is likely to be small. (ii) A monolithic caching architecture. A single cache is
placed in the city to serve all of the users. Since the cache receives requests from a
large population, the hit rate is likely to be high. However, the cache is much farther
away from the end user that in the distributed scheme.

16




Such a system does derive the benefit of a distributed architecture since caches
are close to users. In addition, as in the monclithic architecture, redundant traffic
is prevented from leaving the city. However, as the network grows, the traffic gener-
ated by the broadcasts for each cache miss may become unmanageable; even if the
broadcast is done using multicast.?

Other schemes, such as the Harvest caching system [3], propose to build a hier-
archical caching system. The idea is to have both distributed neighborhood caches
and monolithic city caches. The caches are arranged in a fixed hierarchy with the
small, distributed caches at the bottom and the large, monolithic city caches at the
top. Figure 1-3 depicts such a system.

Requests are first directed to the closest neighborhood cache, and if there is a miss,
the request is forwarded to the monolithic city cache. In this solution, neighborhood
caches bring content close to the users, but city caches aggregate requests from many
users and thus, by having a high hit rate, prevent redundant traffic from crossing the
network outside the city. Thus this solution, like the previous, derives the benefits of
both distributed and monolithic cache architectures.

However, there is a serious practical drawback to this solution. The large, mono-
lithic city caches that are high up in the hierarchy are juxtaposed at critical points
in the network, and handle all of the requests from a very large population. There-
fore, these machines need to be fault-tolerant and able to handle huge numbers of
requests at a time. Building such a machine is expensive, and our assumption is that
as the web continues to grow, building such a machine may in fact become altogether

unfeasable.

1.3.2 Our Model

In this thesis we design algorithms for a different basic architecture that strives to

get the best of both worlds, distributed and monolithic, without requiring excessive

*From a theoretical standpoint, the city network would have to grow quadratically with the
number of caches since the number of broadcast messages would grow this much. Since the viewpoint
of this thesis is purely theoretical, we may assume that such growth is unacceptable.

17



4 Intemet Backbone

Neighborhood
OO0 O
O O 0 O 0 O O \) O

O O O O O O
OO0 OO o¥e O OO *
Neighborhoods of Users

(i)

Figure 1-3: (i) A hierarchy of caches with small neighborhood caches at the bottom of
the hierarchy and a large monolithic city cache at the top. Requests are first sent to
the local neighborhood cache and on a miss they are forwarded to the city cache. The
neighborhood caches bring content closer to the user, while the city cache aggregates
requests from a large population and thus prevents redundant traffic from crossing
the network outside the city. The problem with this system is that the city cache has
to be a large and fault tolerant machine (or cluster of machines) which is expensive
to build and maintain.

18



network infrastructure or huge, fault-tolerant machines. The system is comprised of
many small distributed caches, placed close to the users. These caches cooperate to
form together a cache with large aggregate capacity and hit rate. The challenge is to
show how such a large collection of caches can in fact cooperate efficiently without
overloading any server, without congesting the network, and without any centralized,
monolithic control.

This already difficult goal is further aggravated by the fact that the Internet is
a very large and dynamic network. There are many characteristics of such networks
that make algorithm design difficult, but three central ones are the lack of centralized
control, the fact that the network is in a constant state of flux, and the fact that no
single entity can have completely accurate data on the state of the network.

The lack of centralized control means that algorithms have to work locally and
without any single point of failure. Furthermore, because machines are added to and
removed from the network continually and no machine has an accurate picture of the
state of the network, algorithms have to be designed to be robust under changing

environments and imperfect inforination.

1.4 Design Objectives and Complications

In this section we summarize the proceeding discussion by outlining the general archi-
tecture of the caching system for which we design algorithms. In addition, we discuss
some of the complications involved in designing the system. The section is organized

as a list of objectives with accompanying explanations.

1. Large Distributed System: The system can be built from a very large num-
ber (imagine hundreds of thousands or even millions) of small and cheap caches
that are distributed throughout the network so that there is a cache near every
user. Furthermore, the caches should be distributed so that there are enough

caches in any one area to satisfy all of the requests originating near that area.

One of the reasons that the Internet has grown to its current proportions is that

there is no central authority responsible for its structure. Our caching scheme

19



should also be designed to allow unconstrained growth so that the system will
be deployed throughout the network. Therefore, the system should be designed
so that anyone can add a cache to the system at any time without notifying a
central authority. This will allow a large collection of users, who may not even

know about each other, to cooperate to deploy the system.

. No Centralized Control: The network of caching machines should operate
without any centralized control that could be a critical point of failure. The
caching scheme should not rely on any type of centralized service and caches
should operate asynchronously. The behavior of a cache should depend only
on information available locally, or obtained in a non-centralized fashion. The

system should not make use of global broadcasts.

. Robust Under Imperfect and Inconsistent Information: Since the net-
work of caches will be huge, it will be infeasible for any single cache or user to
have a complete view of the state of the system. Caches can be added to and
removed from the network at any time, and there is no central authority that
keeps track of the status of the caching machines. Thus, different users may
have differing views of the set of caches. The caching system must be designed

to work even under these chaotic conditions.

. Scale Gracefully: The Web grows every day, and so must the caching scheme
if it is to keep up with increasing use. The system should be designed to scale
gracefully as the network grows. There should be no catastrophic updating or

reorganizations.

. Prevent Swamping and Hot Spots: Caching machines and servers should
never be swamped no matter how requests are distributed between pages (e.g.
many requests go to one “hot” page or many requests go to different pages).
Simply reassigning responsibility for a hot page to a cache will not work since
the cache will be swamped by requests. In order to prevent swamping, copies of

the hot page need to be made and distributed to many caches. The requests for

20



the hot page need to be divided among these caches so that none are swamped.

Note however, that it is impossible to predict when a page will be hot. Moreover,
when a server is swamped, it cannot communicate to request help, and therefore,
copies of hot pages need to be made before the page becomes popular. So, for
example, the decision about when to make copies cannot be based on a central
counter of the number of accesses to the page since a flash crowd can swamp

the counting server, thus cutting it off from the rest of the network.

6. Minimize Network Usage: The system should be designed so that the
total traffic in the network is reduced as much as possible. In other words, the
caching system should be designed so that as many requests as possible are
served close (in the network topology sense) to the requester, thus minimizing
network usage. For example, a user at MIT should not go to a cache located in

Japan to retrieve Harvard’s web page.

Note that there is a tradeoff between load-balancing (preventing swamping) and
locality. If a page is extremely popular and is always retrieved from the closest
cache then that cache could be swamped if it is close to a large number of users.
In order to prevent swamping, copies of the page may need to be retrieved from

more distant caches.

7. Balance Storage Requirements: No caching machine should be required
to store a disproportionate fraction of the cached pages. Responsibility for
storing the current active set of pages should be equitably distributed among

the caches.

8. Low Overhead: Users should not have to wait a long time for the system to

retrieve a page because of the caching system.

1.5 Our Contribution

Designing a distributed caching system that fulfills the requirements of the previous

section is a Herculean task too big to be undertaken in this thesis. Therefore, instead

21



of giving a complete design, we concentrate on building algorithmic tools that make
up the high level architecture of a caching system that we believe can fulfill the
stringent criteria set out above. In particular, we concentrate on designing high level
algorithms that control how pages are distributed and replicated to caching machines,
and how users find information in the caches.

We develop our algorithmic tools in a theoretical framework. Specifically, we
propose a simple model of the problem that, while capturing what we believe to be the
essential details of the real problem, may be severely deficient in detail. However, this
abstraction will allow us to prove that our algorithms work - albeit in the simplified
model. We believe that such an approach is justified since our goal is to develop
algorithmic tools that can later be applied to the real world problem.

The two main algorithmic tools that we introduce are called Consistent Hashing
and Random Trees. Consistent hashing is a new hashing scheme that is designed
for load balancing in an environment where the set of caching machines changes
frequently. Random trees are a new replication mecharism that can eliminate the

hot spot problem. More detail is contained in the following two sections.

1.5.1 Consistent Hashing

A hash table is a data structure for what is known as the dictionary problem. In the
dictionary problem there is a set of keys K, and we must build a data structure to
support the operations INSERT, DELETE, and FIND. The hash table consists of a table
of N cells 1... N, and a hash function h that is a mapping from the set of possible
keys to the table. The hash function h maps each key to a cell in the table where it
is then stored, in the case of an INSERT operation, or deleted, in the case of a DELETE
operation. A FIND query is answered by looking into the cell of the table assigned
to the given key by the function h. One important intuition about hash functions
that can be made theoretically sound in some sense is that they distribute the keys
“randomly” into the cells of the table. Thus, each cell receives a roughly equal share
of the keys.

A hash table can be used in a caching scheme to distribute work evenly over a

22



number of caching machines. In the case of the web, where information is in the
form of web pages, the keys are page names (e.g. URLs), and the cells are caching
machines (e.g. IP addresses). When a client requests a page, a FIND query with the
page name as the key is used to compute the name of the cache where the request is
sent. The hash function serves as a method for clients to agree on which machine is
responsible for caching a page without communicating.

In a large system such as the Internet the set of active machines changes over time
since machines are added to or removed from the network constantly. Having such
a dynamic set of active machines amounts to having a hash table with a changing
set of cells. Standard hash functions do not behave well under these conditions.
The problem is that even when the set of cells is only slightly changed, most hash
functions completely reshuffle the mapping of keys to cells. Thus, for each different
configuration of cells in the table, most hash functions induce a completely different
mapping of keys to cells (pages to machines). In the case of the Internet, it is plausible
that almost every client will have a slightly different view of which caching machines
are currently active. If this happens, each client has a different set of cells in its hash
table, and hence a different mapping of pages to machines. This is a disaster for the
cachiny system since clients no longer agree on where a page is cached!

Consistent Hashing is a new type of hashing which is designed to react well to
changes in the set of cells in the table. Like standard hashing techniques, consistent,
hashing does a good job of distributing items “randomly” into cells. However, unlike
standard hashing, different sets of cells do not induce completely different mappings.
Instead, the mappings are “consistent” with each other.

Consistent hashing allows users to agree on the cache responsible for a page even
if users have widely differing views of the set of available caching machines. This
feature of consistent hashing allows us to develop caching protocols that are robust
under changing environments and imperfect information; one of the more difficult
criteria described in section 1.4.

We believe that consistent hashing can be applied to a variety of other problems

such as distributed file systems, distributed databases, and name servers.

23



1.5.2 Random Trees

Consistent hashing is particularly well suited for use in a large distributed caching
system. However, consistent hashing alone is not enough to build a caching system
that can relieve hot spots since simply redirecting the requests to a single cache is
liable to swamp the cache itself. In order to relieve hot spots without creating other
hot spots, information needs to be replicated more than once in the network. We
propose a novel technique called Random Trees, that helps replicate pages according
to their changing popularity. As a page gets more popular, requests for the page are
distributed over more and more caches. Moreover, copies of pages are made before
the page is so popular that a cache is swamped.

A crucial part of the Random Trees protocol is the use of a hash function to
distribute caching machines over nodes of a tree. Thus, in order to obtain a viable
system for the Internet, we combine consistent hashing and random trees. The result
is a protocol that can eliminate hot spots in the network even if clients have imperfect
information about the state of the network.

In addition, we show how a representation of network topology we call a Net-
work Ultrametric can be used in the random tree protocol to keep information close

(network topology-wise) to the users that want it.

1.6 Previous Work

In this section we review some of the previous work on hashing and on web caching.

1.6.1 Previous Work on Hashing

Hashing is most commonly discussed in the context of either the static or dynamic
dictionary problems. In the static dictionary problem, we are given a set of keys K
ahead of time, and we need to put them into a data structure that supports FIND
queries. In the dynamic dictionary model, the set K is not given ahead of time but

is built up with a sequence of INSERT and DELETE operations that arc intermingled

24



with the FIND queries (see [8]).

A hash table is a data structure for the dictionary problem that consists of a table
of N cells 1...N, and a hash function h that is a mapping from the set of possible
keys to the table. The hash function h maps each key to a cell in the table where it
is then stored. A FIND query is answered by looking in the cell of the table assigned
to the key by h. Ideally, we would want the hash function to map different keys to
different cells in the table. If two different keys are assigned to the same cell by h we
say that the keys collide.

A hash function is called perfect for a set of keys K if there are no collisions
between the elements of K. Much research has been devoted to building perfect hash
functions (see [18], [22], [19], [6]). However none have addressed how the function
behaves when the range is changed as we do.

Another important class of hash functions are called k-universal. We say that a
family of functions is k-universal if any k£ keys are mapped independently into the
table when we choose a function at random from the family. In other words a family
is k-universal if for any distinct keys z;, 1 <i < k, and any cells y;, 1 < i < k:

Prlf(z1) = v1, £(22) = s Flow) = wh] = ¢

Where the probability is over a random choice of function f from the family.
Another way of looking at this is that the random variables {f(z)} where = ranges
over the keys are k-way independent.

Universal hash families were defined by Carter and Wegman in [2], and in [21].
Universal hashing has found many applications in algorithms and complexity theory
(for example [13]) and will play a central role in the theory of consistent hashing.

To the best of our knowledge, no previous research has been done on hash functions

tl. 't adapt well to changes in the range of the function.

25



1.6.2 Previous Work on Web Caching

Much practical work has been done on caching for the Web. One approach which
is in wide use today is for several clients to share a single cache that handles all of
their requests. These caches are known as Prozies [10]. The dilemma in this scheme
is that there is a greater benefit if more clients share the same proxy, but then the
proxy itself is liabie to become overloaded.

One approach to solving this dilemma is to create a group of machines that func-
tion together as a cache. Malpani et al. in [11] describe a system based on IP multicast
that implements this scheme. A client’s request for a document is directed to an ar-
bitrary one of the machines in the group of caching machines. If the page is currently
in the cache of the machine, it it returned to the client. Otherwise, the server for-
wards the request to all of the other caching machines by means of a multicast. The
main disadvantage of this scheme is that as the number of caching machines grows,
the amount of communication between the machines grows very quickly. Thus, this
approach is unsuitable for very large networks.

Chankhunthod at al. [3] developed the Harvest Cache, a more scalable approach
that uses trees of caches. However, they use a single tree of caches which can, as we
have already discussed, cause swamping of the caches close to the root. There are a
large number of papers investigating the various systems issues involved in building
web caches such as [9], [14], [16], [20], and [23].

On the theoretical side, Plaxton and Rajaraman [15] introduced the idea of using
randomization and hashing to balance load on a network. Their work however was
done in the context of a synchronous network of nodes in a parallel machine. They
assume the existence of special priority messages that reach a node even though it
may be swamped with other low priority messages which is clearly not the case for
the Internet. In [7]) the random trees protocol was introduced along with consistent

hashing.

26



1.7 Structure of the Thesis

The thesis is divided into two main chapters. In chapter 2, we introduce the notion of a
consistent hash function. Consistent hashing is motivated by a simple caching scheme
that ignores the hot spot problem. Most of the important technical contributions of
this thesis are contained in chapter 2.

Chapter 3 introduces the random tree protocol that is designed to compliment
consistent hashing by taking care of the hot spot problem. The random tree protocol
is presented as an application of consistent hashing, and only a brief analysis is
presented since a complete analysis appears in [7]. Chapter 3 also discusses various

extensions of the random tree protocol that also appear in [7].

27



Chapter 2

Consistent Hashing

In this chapter we present our first algorithmic tool called Consistent Hashing. Con-
sistent Hashing is a new hashing scheme that is motivated by a simplified version
of the caching problem where we assume that there are no very popular pages. In
this case, the problem becomes how to disiribute load evenly over a set of caches,
and hashing is a standard solution in this situation. Unfortunately, standard hashing
schemes do not work well in environments where users have imperfect or inconsistent
information. Therefore, we introduce consistent hashing that derives the benefits of
standard hashing but is also robust under the haphazard conditions of the Internet.

Even though consistent hashing was initially developed in the context of caching
systems, we believe that there are many other applications where consistent hashing
should be used in place of existing standard hashing schemes. Therefore, we develop
the theory of consistent hashing in a general setting and use caching as a motivating
example.

This section is outlined as follows. In section 2.1 we motivate consistent hashing by
describing a simple caching scheme that ignores the hot spot problem. This exainple
is used throughout the section as motivation for the various definitions that we make.
Section 2.1 also provides a brief introduction to the concept of consistent hashing. In
section 2.2 we formalize the intuitive notions developed in the motivation section as
definitions, and in section 2.2.3 we present our main construction of a consistent hash

function. Section 2.2.4 discusses how to implement consistent hashing in practice.

28



Sections 2.2.6 and 2.2.7 discuss different adversarial models and some basic theory

underlying consistent hashing.

2.1 Practical Motivation

In this section, a simple caching scheme that serves as a vehicle for understanding and
motivating consistent hashing is presented. We assume for the moment that server
swamping is caused only by the fact that a server is respo: sible for many different
documents which are all accessed on a regular basis. That is, we ignore for now the
case where load on a server is a result of a few very popular pages stored on the
server.

Our model of the web contains two components: servers, and users. Servers con-
tain documents which users want to retrieve. Assume that all documents are accessed
by users at the same rate. However, some servers may contain far more documents
than others, and therefore have more requests to service. The basic objective is to
spread the load of answering user requests equitably between the servers. Note that
in this sense, all the servers are also acting as caches.

Responsibility for serving documents is distributed between the servers using a
hash function. The function hashes document names to servers. Users request a
document from the server assigned by the hash function instead of from the original
location. If the server has a copy of the documeunt, then the request can be answered.
If not, then a copy is requested by the server from the “home location” of the docu-
ment (e.g. URL in document name). When a copy is received the request is answered,
and subsequent requests can also be serviced. Thus, the origina! rver does not need
to be involved in all requests for documents it stores. Figure 2-1 illustrates this sys-
tem. Another approach is to redirect requests from the original server to the caching
server. However, serving redirect requests can in fact swamp the original server mak-
ing this approach unattractive. The hash function serves as a method for users to
agree on which server is responsible for a document without communicating.

A common and useful intuition about hash functions (which in fact can be made

29



Server
A
Doc 1 Doc 2 Doc 3
Users
(i)
Server Server Server
A B C
[ A i
< m &)
" i i
= I~ @
3 3 <3
) ) 8
£ i~ £=
Doc 1 Doc 2 CSOC 3 Doc 3
New User

Users

(i)

Figure 2-1: (i) Three users requesting documents Docl, Doc2, and Doc3 from the
server responsible for them. The server must answer all three of these requests. (ii) A
hash function h is distributed between the users. Requests are directed to the server
to which the hash function hashes a document name. Here each document is assigned
to a different server. After obtaining a copy of the requested document, each server
only has to answer a single request. If an additional user requests document Docl,
server A is not involved, since a copy was already obtained to serve the previous
request.

30




theoretically sound in some sense) is that they distribute items “randomly”. Following
this intuition, in the caching system documents are assigned to random servers by
the hash function. This is very desirable, since a random assignment will most likely
spread the load of serving the current active set of documents roughly evenly between
the servers. If the space allocated for caching on each server is large enough (e.g.
an equal fraction of the total size of the average active set), then the caching will
be effective and servers will have roughly the same load. A server storing many
documents in the current active set supplies copies to other servers who become
responsible for them.

To give an example of a hash function that can be used to distribute documents
to servers assume that document names are integers, and that there are n servers
{0,1,2,... ,n — 1}. A very commonly used hash function is given by f(d) = ad + b
(mod n) for some fixed choice of integers a and b. Note that computing this function
is very simple and efficient. In addition, note without proof (see [CLR] or [RM]) that
for most choices of a and b the function distributes documents roughly evenly over

the servers. Figure 2-2 illustrates how the function distributes documents to servers.

2.1.1 Complications

The number of servers on the web is growing at an enormous rate. Each day many
machines are added to the network, and these machines should be incorporated into
the caching scheme. Adding a server to the scheme amounts to changing the range
of the hash function to include the new server, and notifying users of the change.
The following example exposes the complications caused by adding a server. As-
sume that there are m servers and that the hash function mapping documents to
servers is f(d) = ad + b (mod n). When the n + 1'th server is added, the hash
function is changed to be f'(d) = ad + b (mod n + 1). Figure 2-3 illustrates how
the mapping of documents to servers changes. A common characteri- 3 ~f this hash
function and many other standard hash functions is that when the range of the func-
tion is modified, the mapping is completely reshuffeled. That is, most documents are

mapped to different servers than they were mapped to before the change.

31



50

30

23

0 1 2 3 4 5 6 7 8 9 10 11 12
@)
16

7 i 6

O T 2773 4 5 6 7 8 9 10 1T 1
(ii)

Figure 2-2: This figure illustrates how hash functions distribute documents between
servers. Assume that document names are integers, and that there are 13 servers
{1,2,...,13}. Documents are hashed to servers using a common type of hash function
which is f(d) = ad + b (mod 13) for some fixed integers a and b. (i) The original
distribution of 134 documents to servers. Note that some servers store many more
documents than others, and thus in the model of equal access frequency they are more
heavily loaded. (ii) The distribution of documents to servers by the hash function.
No server is responsible for a disproportionately large share of documents.

32




Servers

-

T
-
-+
-t

1 1m 27 29 36 38 40 43
()

o+ @ e o [ [

{ t { ¢ +—> Documents

T L)
5 7 10 11 27 29 36 38 40 43
(ii)

Figure 2-3: (i) The assignment of 10 documents to 4 servers using the hash function
f(@) = d+ 1 (mod 4). (ii) The assignment after one additional server is added.
The hash function is changed to be f(d) = d + 1 (mod 5). Squares show the new
mapping and circles show the mapping of the previous function. Note that almost

every document is mapped to a different server as a result of the addition of the new
server.

33



A complete reshuffeling of the distribution of documents to servers is catastrophic
for the caching scheme. After each addition, and subsequent reshuffeling new copies
of all documents need to be requested from the “home locations” since the previous
copies are rendered obsolete. If servers are continuously being added to the system
then the caching protocol would be worthless since a server storing a large number
of documents would be constantly supplying new copies to different servers. In other
words, such a server would be swamped.

In addition to the problem of reshuffeling there is another, even more serious
complication. When a server is added to the system, users have to be notified of
the addition so that they can start to use the new hash function. This implies that
all users are notified of the addition of a new cache at the same time. In a network
such as the Internet, such global synchronous notification is of course impossible. It
is feasible however, to assume that notification about new servers is done by slowly
propagating the information from server to server much in the same way that network
news is distributed. As a consequence, the set of servers being used in the protocol
may differ widely from user to user. We call the set of servers that a user is aware
of the user’s View. Since synchronous notification is impossible there are likely to be
many different views being used by different users.

The example of figure 2-3 can also be used to illustrate the effects of multiple
views of the servers on the caching scheme. If some of the users are not aware of the
addition of server 4, then there are two views of the system held by users. One view
is 0,1, 2,3 and the other is 0, 1, 2, 3, 4. Users not aware of the addition of server 4 use
the old mapping of documents to servers. Those who are aware of the new server 4
use the new mapping, which is almost a complete reshuffeling of the old mapping. As
a result, the number of documents that a server is responsible for over both views is
almost doubled! For example, users with the old view use server 2 for the documents 5
and 29 however users with the new view use server 2 for documents 11 and 36. Server
2 must be prepared to handle requests for all of these documents, thus effectively
doubling the requirements on the server. The total number of documents that a

server is responsible for is called its load. For example, the load of server 2 in the

34



example of figure 2-3 is 4; 2 documents from each view. Clearly, the load of a server
should be small in spite of having multiple views of the servers.

A further complication resulting from multiple views of the servers is that a single
document may be assigned to different servers in different views. For example in
figure 2-3, document D is assigned to server A in the view 0,1, 2,3 and to the server
B in the view 0, 1,2, 3, 4. The main server for document D has to supply a copy to each
of these servers. A large number of views means a large number of servers responsible
for a document, which in turn implies that the home server will be swamped with
requests for copies. The total number of servers a document is assigned to is called
the spread of the document. For example, the spread of document 5 in the example
of figure 2-3 is 2. Clearly, the spread of a document should be small in spite of having
multiple views of the servers.

Summarizing the above, the hash function should have the following general prop-

erties:

e The function should distribute documents roughly evenly over the set of servers.

e When a new sever is added, and the range of the function is changed, the map-
ping of documents to servers should not be completely reshuffeled. There should

be a strong correlation, or consistency, between the old and new mappings.

e In the presence of multiple views of the servers, the function should not map
too many documents to any server. In other words, the load on servers should

not go up dramatically when there are multiple views.

e In the presence of muitiple views of the servers, there should not be too many
servers responsible for a given document. Or, in other words, the spread of a

document should not go up drastically because of multiple views.

In this paper we present a hashing scheme called Consistent Hashing that has all of
the above properties. The next section presents the basic solution, precise definitions

are in section 2.2.

35



2.1.2 A Solution

Surprisingly, there is a very simple hashing scheme (described in this single paragraph)
which fulfills all of the rather stringent requirements set out above. Documents and
servers are mapped to points on a circle using standard hash functions. Assume
for intuition that these functions distribute the documents and servers randomly
around the circle. Now, a document is assigned to the server whose point is the first
encountered when the circle is traversed clockwise from the document’s point. An
example is shown in figure 2-4.

Remarkably, this simple construction has all of the desired properties. Following
is an intuitive discussion of the construction and in section 2.2.3 a rigorous analysis
is presented.

Intuitively, if documents and servers are distributed randomly around the circle
then each server should be responsible for roughly the same number of documents.
Of course, there is a possibility that the points could be distributed badly so that
one server receives a disproportionate fraction of the documents. While we cannot
completely prevent such a misfortune, we can improve the chance of a good result
with a simple trick which is described later (section 2.2.3).

Suppose that a new server is added to the system. The only documents that
are reassigned are those with points that are now nearest to the new server’s point;
the mapping is not completely reshuffeled. Documents are only moved to the newly
introduced server, and are not moved between old servers. Therefore most of the
previously cached copied of documents are still valid because the newly obtained
mapping is “consistent” with the previous one. Figure 2-4 illustrates this point.

This construction also behaves remarkably well in the presence of multiple views.
Intuitively, if a document is assigned to a server in some view, then that document’s
point is likely to be relatively close to the server’s point!. So only documents with
points close to the server point are likely to be assigned to the server. Since document

points are distributed randomly around the circle only a few document points fall close

1Since if they were far apart, then another server’s point would be likely to fall in between,
preventing the document from being assigned to the original server.

36



@ Server
QO Document
(i) (ii)

t $ $ t Documents

w +
-

(iii)

Figure 2-4: (i) Both documents and servers are mapped to points on a circle using
standard hash functions. A documents is assigned to the closest server going clockwise
around the circle. For example items 6, 7, and 8 are mapped to server F. Arrows
show the mapping of documents to servers. (ii) When a new server is added the only
documents that are reassigned are those those now closest to the new server going
clockwise around the circle. In this case when we add the new server only items 6 and
7 move to the new server. Items do not move between previously existing servers. (iii)
The mapping of documents to servers before and after the addition of a new server.
Squares show the new mapping and circles are the previous mapping. Compare this
with the results obtained from standard hashing in figure 2-3.

37



to a server’s point. So even if there are a large number of views, only a relatively
small number of documents are assigned to a server. The load of a server does not
increase drastically with multiple views. In fact, we show in section 2.2.3 that the Joad
increases only logarithmically in the number of views, while with standard hashing
this dependence can be linear; clearly a substantial improvement.

Turning the above intuition inside out, if a server is responsible for a document
then the server’s point is likely to be relatively close to the document’s point. Since
server points are distributed randomly arcund the circle only a small number of servers
points fall nearby any document point. So even if there are many views, only a few
servers will have responsibility for any one document. The spread of a document
does not increase dramatically with the number of views. As before, we show in
section 2.2.3 that the spread increases only logarithmically in the number of views,
while with standard hashing this dependence can again be linear.

Following is a summary of the important properties of the “circle hash function”:

e Documents are distributd to servers “randomly”.

e When a server is added, the only documents reassigned are those that are
assigned to the new server. The newly obtained and old mappings are consistent

with each other.

e The load of a server increases only logarithmically with the number of views in

contrast to linearly with standard hashing.

e The spread of a document increases only logarithmically with the number of

views in contrast to the linear dependence of standard hashing.

Clearly, using this new hashing technique in the previously described caching
scheme solves the complications raised. The above “consistency properties” allow
the caching scheme to grow gracefully with the growth of the network. Servers can
be added to the network without disrupting the caching and multiple views of the
servers can exist without degrading the performance of the system. Furthermore, the

function is very simple and efficient to evaluate (see section 2.2.4).

38



2.2 Consistent Hash Functions

In this section we conceptualize the notion of a consistent hash function intuitively
described in the previous section. Section 2.2.1 reviews the basics of hashing from a
theoretical standpoint. Those familiar with the subject can skip this section. Consis-
tent hash functions are defined in section 2.2.2. The circle construction of a consistent
hash function is described in section 2.2.3, and the properties of this particular con-
struction are derived and proved in section 2.2.3. Implementation issues are discussed
in section 2.2.4.

In the following sections the motivating application of caching, is set aside as the
central issue, and consistent hashing is discussed as a general hashing scheme which
may have many other applications. Nonetheless, some intuitive discussions still derive

from the simple caching scheme presented in the previous section.

2.2.1 Hash Families

We assume that the reader is familiar with the basic notion of a hash table data
structure. In a hash table, a set of items I is mapped to a set of buckets B by a fixed
hash function. In theoretical settings the intuitive notion of hashing is commonly
modeled as follows: You are given a family of hash functions H whose elements are
each functions that map the items I into the buckets B. The hashing is done by
choosing a random function f from the family and using that function to map items
to buckets.

Why do we use this seemingly more complicated model of hashing? Suppose that
a malicious adversary? is aware of the hashing scheme being used and is attempting to
devise an instance on which the scheme bebaves poorly. Any scheme that uses a single
fixed function to map items to buckets is vulnerable to an attack by an adversary
since the input that causes the absolute worst case behavior of th -cheme can be

determined.

2Throughout®®®Throughout this paper we assume the existence of such adversaries. In fact,
we claim that such adversarics are ubiquitous, and can be found anywhere you look.

39



This is best explained with an example. Suppose in the caching scheme presented
in section 2.1, that an adversary has the power to permanently crash a number of
servers. Assume in addition, that the mapping of documents (items) and servers
(buckets) to the circle is known to the adversary. This adversary can concoct a plan
to crash servers which would leave a remaining server heavily loaded. Specifically,
the adversary can crash all servers in a portion of the circle, creating a gap with no
servers at all. All the documents previously assigned to the crashed servers are now
assigned to the server whose point is on the end of the gap. This server becomes
overloaded with requests.

A standard method to { ‘| such an adversary is adding randomization to the
scheme. For example, if the points associated with servers and documents are chosen
randomly and the adversary is not aware of these random choices, then the above
scheme for overloading some servers does not work. The adversary does not know
the placement of the points in the circle and therefore does not know how to create
a gap.

In this paper, randomization is added to the scheme in a particular way. Choosing
a function from a family of hash functions is done by taking one uniformly and at
random. Thus, “using a hash family H” means that first a function f € H is selected
uniformly and at random and then that function is used to map items to buckets.

Hash families are classified by various properties. Using a hash family involves
randomization, so these properties are probabilistic. We say that a property holds
with probability p for a hash family H if for a function chosen from the family uniformly

and at random, the property holds with probability p. Following is an example.

Example 1 (Linear Congruential Hashing) Let both the set of items I and the set
of buckets B be {0,1,2,...,p— 1} for a prime p. The family H is defined as all the
functions of the form f(z) = az + b (mod p) for all a,b € {0,1,2,...,p— 1}.

To use this hash family, a and b are chosen at random (this is ce[Dce[equivalent to
choosing a function from the family at random). Then, item i is assigned to bucket

ai + b (mod p). The following lemma gives an example of a property of the hash

40



family that holds with a certain probability.

Lemma 2.2.1 Let H be the hash family defined above, and let x and y be distinct
items, then Pr[f(z) =1 and f(y) = j] = 1/p%.

In other words, the probability that a randomly chosen function f from the family

H maps the item z to 7 and the item y to j is the same as in the case where the two
items are mapped to the buckets uniformly and independently.
Proof: Since the set {0,1,2,...,p — 1} with operations (mod p) is a field, there is
a unique pair a and b such that ax + b = ¢ and ay + b = j. Thus the probability
that f(z) = ¢ and f(y) = j is equal to the probability of selecting the pair a,b
while choosing a function from H. The probability of selecting any given pair a, b is
1/p%. ]

Lemma 2.2.1 shows that a randomly chosen function from H behaves like a com-
pletely random function with respect to pairs of items.3 Why would we prefer to use
the family H instead of choosing a completely random function? Notice that choos-
ing, storing, and evaluating functions from H is remarkably simple and efficient. We
pick e and b at random. These values can be stored using very little memory, and
evaluating the function is simple. On the other hand, selecting a truly random func-
tion requires choosing and storing a random table of the value of the function on
every single item.

Hash families similar to the one presented in the above example are important ele-

ments in the practical implementation of our consistent hash functions (section 2.2.4).

2.2.2 Definitions

Unlike traditional hash functions, consistent hash functions are intended to deal with

situations in which the set of buckets (the range of the function) changes. Therefore,

3A hash family that looks random in respect to pairs of items is called pairwise independent.
Similarly, families that look random with respect to k elements are k-way independent. Hash
families that are k-way independent are important in section 2.2.4

41



we introduce the notion of a ranged hash function that permits the set of buckets in
the range of the function to change.

Let the set of items be I and the set of buckets be B. A view is a subset of
the buckets B. A ranged hash function is a function of the form f : 2¢ x I — B.
Such a function specifies an assignment of items to buckets for every possibie view.
That is, f(V,1) is the bucket to which item ¢ is assigned in view V. (We will use the
notation fy (i) in place of f(V,7) from now on.) Since items should only be assigned
to available buckets (buckets that are in the current view), we require fy,(I) C V for
every view V.

A ranged hash family is a family of ranged hash functions.

In section 2.1 the following characteristics of ranged hash functions were discussed

informally:

e Balance: Items are distributed to buckets “randomly” in every view.

e Monotonicity: When a bucket is added to a view, the only items reassigned

are those that are assigned to the new bucket.

e Load: The Load of a bucket is the number of items assigned to a bucket over

a set of views. Recall that ideally, the load should be small.

e Spread: The Spread of an item is the number of buckets an item is placed in

over a set of views. Ideally, spread should be small.

The remainder of this section defines formally these intuitive properties. Through-
out, we use the following notational conventions: H is a ranged hash family, f is a

ranged hash function, V is a view, 7 is an item, and b is a bucket.

Balance: A ranged hash family is balanced if, given any particular view V an item
¢, and a bucket b € V, the probability that item i is mapped to bucket b in view V is
o1/ V).

The balance property is what is prized about standard hash functions: an item is

equally likely to be put into any bucket. The balance property does not say anything

12



A B C A B C D A B C D E

1231456 | 789 23] 56 789 |1 4 23| 56 7 9411 48
10 10 10

(i) (ii) (iii)

Figure 2-5: (1) The items 1,2,...,10 hashed into 3 buckets A, B, and C. (ii) A new,
fourth bucket D is added. Since the hash function is monotone, the only items that
are relocated are those that move into the new bucket D. (i.e. items 1, 4 and 10) (iii)
Another new bucket E is added and some items move into E (items 4 and 8). Items
do not move between old buckets.

about behavior over changing views, only that in each fixed view items are distributed

with roughly equal probabilities.

Monotonicity: A ranged hash function f is monotone if for all views V; C V, C B,
fw(2) € Vi implies fv, (7)) = fv,(%). A ranged hash family is monotone if every ranged

hash function in it is monotone.

The monotonicity property says that if items are initially assigned to a set of
buckets V) and then some new buckets are added to form V5, then an item may move
from an old bucket to a new bucket, but not from one old bucket to another. This
reflects one intuition about consistency: when the set of usable buckets changes, items
should not be completely reshuffeled. Figure 2-5 gives an example of the monotonicity
property.

The following lemma is a simple consequence of these two definitions and helps to
clarify them. The lemma gives the the expected number of items that remain fixed

when the range of the hash function changes.

Lemma 2.2.2 Let H be a monotonic, balanced ranged hash family. Let V; and V, be
views. The ezpected fraction of items i for which fv,(2) = fu,(2) is ({%“2%) where

the probability is over the uniform selection of f € H.

Proof:
In this proof, we count the number of items 7 for which fy, (i) # fv, (7). In other
words, as the set of usable buckets changes from V; to V5, we count items that “move”

instead of the number of items that are “fixed”.

43



Vi

Figure 2-6: The view V] is transformed into the view V; in two steps. First V] is
transformed into V; U V,. In this step, monotonicity implies that items only move
from V; into V, — V}. Next, V; UV, is transformed into V,. Here monotonicity implies
that items only move from V; — V, into V,. Balance tells us how many items are
expected to move in each step.

We change the set of usable buckets from V; to V; in two steps. In the first step,
we expand the set of buckets from V; to V; UV, (see figure 2-6). Balance implies that
the expected fraction of items that move into V, — V; is O (Jl—"%‘—ll) Monotonicity
implies that no other items move.

In the second step we contract the set of buckets from V; U V, to V. Again,
balance implies that the expected fraction of items that move into V; from V; — V, is
(@) (Il%l) and monotonicity implies that no other items move.

In the first step, items were only moved into V, — V;. In the second step, items

were only moved out of V) — V5. Since these sets are disjoint, no item moved in both

steps. Therefore, the expected fraction of items which moved in either step is:

IW—%O CW—%Q

O\ 75— )+0| 77—
(MU%| ViU Vs
Therefore, the expected fraction of items that remain fixed is:

V2 — W] IV1—~V2I) (IVlﬂVzl)
1-0 + =2
(MU%II%UW Viu Vs

(]
We continue to define properties of ranged hash families that capture additional

aspects of the notion of “consistency”.

Spread: Let V = {V;...Vi} be a set of views. For a ranged hash function f, and a

particular item %, the spread of the function on item ¢ over the set of views V is the

44




quantity |{fv,(¢), fu,(2),--. , f,(3)}|. This quantity is denoted spread;(V,1).

The spread of an item ¢ over a set of views is the number of different buckets over
all views that 7 is mapped to by f. Figure 2-7 illustrates spread.

In terms of the caching system described in section 2.1 spread is the number
of different caches that are assigned responsibility for a document when there exist
multiple views. If ¢ is a document, then { fv, (¢), fi5(?), ..., fy, (¢)} is the set of all the
responsible caches. Recall that the central server supplies a copy of the document to
each of these responsible caches, so low spread is vital if the scheme is to eliminate
swamping.

Clearly, spread is very sensitive to the set of views V. For example, if each view
consisted of a single different bucket, then the spread of every item would be the total
number of views! Even if views are restricted to contain at least a 1/t fraction of the
buckets, then there exists a set of ¢ views that force the spread of any item to be .
Simply take t disjoint views each containing a 1/t fraction of the buckets. In this case
an item is assigned to a different bucket in every view. Hence, the spread of every
item is ¢.

In general, we study spread under the assumption that each view contains at least
a 1/t fraction of the buckets (¢ does not have to be a constant). As the above example
shows, under this assumption spread cannot be less than ¢, but the question to be
answered is: “How does the spread grow as a function of the number of views?”
In some ranged hash families the spread grows linearly with the number of views.
However, there exist families where the spread grows only logarithmically. One such

family is described in section 2.2.3.

Load: Let V = {V;...V,} be a set of views. For a ranged hash function f, and a
particular bucket b, the load of the function on bucket b over the set of views V is the

quantity (Uy, ey f;j'(b),. This quantity is denoted load;(V, b).

Note that f;jl(b) is the set of items assigned to bucket b in view V;. Thus,
load,(V, b) is the total number of items which in some view are assigned to the bucket

b. Figure 2-8 illustrates the concept of load.

45




(0] (i)

12143 2 1 4 3

(i) {iv)

Figure 2-7: Four views of the buckets {A, B,C, D, E, F,G, H} and the mapping of
items 1,2, 3,4 into the buckets for each view. Shaded buckets are not available in the
given view. (i) The mapping for view {B, D, F, H}. (ii) The mapping for the view
{B,C}. (iii) The mapping for the view {A, B, C, D}. (iv) The mapping for the view
{A,B,F,H}. Item 1 is placed in bucket B in all the views. Thus, the spread of item
1 over these views is 1. Item 4 is placed in the buckets D,C, and F over the four
~ views. Thus the spread of item 4 over these views is 3.

The load property measures the effect of multiple views on the number of items
hashed to a given bucket. For example, in the caching scheme of section 2.1 a docu-
ment 7 contributes to the load on a server b if there is as least one view such that i is
assigned to b in that view (fy(¢) = b). Thus, load measures how many documents a
server is responsible for in the presence of multiple views.

Load is related to spread, but they are not equivalent. For example imagine a
hash function that maps all the items to a single bucket b. For any item and any
set of views all containing b, the spread of i is one. On the other hand, the load of
b is the total number of items. In this case the distribution of items is not balanced
between the buckets.

As in the case of spread, load is generally studied under the assumption that each
view contains at least a 1/t fraction of the buckets. (Again, ¢ does not have to be a
constant.)

We have defined a number of “consistency properties” of ranged hash families:
Balance, Monotonicity, Spread, and Load. The name consistent hash family is used
loosely to describe a ranged hash family that has good behavior with respect to these
properties. When introducing a new hash family the performance relating to each of

the consistency properties is explicitly stated.

46




1 2 3 4 5 1 2 4 3
5
@) (i)
A B C D E
LI 4 5

(iii)

Figure 2-8: The distribution of items 1,2,3,4,5 in buckets A, B,C, D, E for three
different views. The load of bucket A over these views is one since only the item 1 is
placed in it. The load of bucket B is five since all the items, in some view, are placed
in it.

2.2.3 A Consistent Hash Family

This section describes the main example of a consistent hash family presented in
this paper. The informal construction in section 2.1 is formalized as a ranged hash
family in section 2.2.3. This formalization captures the intuition of the circle hash
function. However, this simplified family requires manipulation of real numbers which
is clearly a drawback. Nevertheless, in section 2.2.3 we state and prove the consistency
parameters for this family. In section 2.2.4 we show how to modify the family to obtain
one that is efficiently computable (does not rely on real numbers), and also retains

the same consistency properties.

Construction

This section formalizes the intuition of the circle construction presented in section 2.1.
In the basic construction, items and buckets are mapped to “random” points around
a circle, and an item is mapped to the bucket whose point is encountered first when
the circle is traversed clockwise from the item’s point. Recall that there is a possi-
bility that points could be distributed badly around the circle; one bucket may be
responsible for a disproportionate section of the circle. Such an unfortunate instance
is shown in figure 2-9. In order to decrease the likelihood of such an unlucky event
we slightly modify the basic construction by assigning to a bucket m (m > 1) points

around the circle instead of just one. As before, items are assigned to a single point

47



Figure 2-9: An unlucky random placement of bucket points around the unit circle.
Bucket A is responsible for a disproportionately large section of the unit circle. Since
items points are distributed randomly around the circle it is very likely that bucket
A will have many more items assigned to it than other buckets do.

and are mapped to the bucket that has a point nearest to the item’s point in the
clockwise direction. Intuitively, when m is large there is less of a chance that buckets
will be unequally distributed around th circle. We show that m need not be unman-
ageably large for there to be a very good chance of a good distribution of points. This
modified version of the circle hash family is formally described below.

Let C be a circle with circumference one. We will call C the unit circle. Let
r; : I — C be a function that maps items to the unit circle. Let 75 : B X [m] — C
([m] = {1,2,3,... ,m}) be a function that maps multiple copies of buckets to the
unit circle (Each pair (b,n) is considered a “copy” of the bucket b).

Each hash function in the “unit circle consistent hash family” is represented by a
pair of functions: (rp,r). Given such a pair, fy(¢) is defined to be the bucket in the
view V that has a point closest to 7/(z) going clockwise around the circle. Thus, to
compute the mapping of an item ¢ in a view V we first map the bucket copies to the
circle. Then, starting from the point r;(i), we sweep around the circle clockwise until
we encounter a bucket point. The bucket associated with this point is the bucket that
¢ is mapped to. Figure 2-10 depicts this situation for m = 4.

We say that a bucket point rg(b,n) is responsible for an arc in a view V if the

“Note that “unit circle” usually refers to a circle with radius equal to 1. We will always be
referring to a circle with circumference equal to one.

48




bucket point is on the right end of the arc, there is no bucket point in the interior of
the arc, and some other bucket point is on the left end of the arc. Any item whose
point falls into this arc is assigned to the bucket b by the function. Figure 2-10 shows
a mapping of bucket points to the unit circle, and the arcs that each bucket point is
responsible for.

If we assume that the family is made up of all possible pairs of functions mapping
buckets and items to the unit circle, then choosing a random function from the family
is equivalent to choosing two completely random functions (rg,r;). Hence, we call
this family UC;gpdom (for “unit circle - random mappings”).

Using the family UC; sndom requires the manipulation of real numbers. Clearly this
is impractical, but in section 2.2.4 we show how to modify the construction so that
real numbers are not used. For now, assume that we can compute with real numbers,
that is, we can choose a function from the family and can evaluate functions in the

family.

Analysis

In this section we state and prove the consistency parameters of the ranged hash family
UClrandom- These parameters hold probabilistically over the choice of function from
the family. In particular, the bounds on the parameters will hold with probability
at least 1 — 1/N where N is an arbit .rily chosen confidence factor. The confidence
factor N appears in the bounds themselves so that if a high confidence factor is
desired, then the bounds are degraded accordingly. This approach is a generalization
of the common practice of expressing probabilities as a function of problem size.
Throughout the thesis, logarithms are taken base e unless otherwise sepcified.
The following theorem states the consistency parameters of the family
UCandom-

Theorem 2.2.3 Let V = {V},V,,...,Vi} be a set of views of the set of buckets B
such that: |U;7=1 V]| =T and forall1 < j <k, |V;] 2 T/t. Let N > 1 be a confidence

factor. If each bucket is replicated and mapped m times then:

49



0[—. *—S—0—0—6C 90— o—& < © ] 1
A B A B B A B
Buckets
(ii)
Al B A ' B B A B A

(iii)

Figure 2-10: (i) A unit circle hash function with m = 4. Buckets A and B have 4
points associated with each of them. Items are mapped to the bucket closest to them
going clockwise. Item 1 is closest to a point of bucket B and item 2 is closest to a
point of bucket B. Item 5 is closest clockwise to a point of bucket A. (ii) The unit
circle drawn as an interval with length one where we imagine that the endpoints of the
interval are “glued together”. (iii) The parts of the circle (viewed as an interval) that
buckets A and B are responsible for. Bucket points are responsible for the arc directly
to their left. Since there are multiple copies of each bucket, buckets are responsible
for a set of arcs.

50



o Monotonicity: The family UC,andom is monotone (regardless of V and N ).

e Spread: For any item i € I, spreads(V,i) = O(tlog(Nk)) with probability
greater than 1 — 1/N over the choice of f € UCrandom-

e Load: For any bucket b € B, loads(V,b) = O ((LTI-[+ 1) tlog(Nmk)) with
probability greater than 1 — 1/N over the choice of f € UCrandom-

e Balance: For any fized view V and item i, the probability that item i is mapped
to bucket b in view V is O (I%I (lggg_IY_Ll_’_lz + 1)) + -

m

| The balance claim of theorem 2.2.3 requires clarification. Note that if we choose
m = Q(log(|V])), and N = poly(|V]), then the bound simplifies into O(1/|V|) which
gives the definition of the balance property.

The proof of theorem 2.2.3 is presented in the remainder of this section as a series
of lemmas.

In a number of the proofs, the Chernoff bound (See appendix A) is used where
a more direct method could be applied. The reason for this is that in section 2.2.4
the family UC4ndom is modified so that the mapping of points to the circle is not
completely random. The modification will be such that the Chernoff bounds will
still hold; thus the proofs presented in this section remain valid. Cases in which
superfluous use of Chernoff bounds are made are highlighted, and should not make
reading the proofs any harder.

Intuitively, the family is monoctone since when a new bucket is added, the only
items that move are those that are now closest clockwise to points associated with
the new bucket. The proof of monotonicity is simple and is given in the following

Lemma.
Lemma 2.2.4 The family UC,andom 18 monotone.

Proof:
Let V) C V, C B be two views of the buckets. Let f be any function in UC}spndom.
We need to show that fy,(i) € V; implies fy, () = fi, (7). Now, fi,(:) € V; implies

51



Items

i
E—C @ *—& © —@—S —9 }
A C A C B D B D
Buckets
(i)
Items
9
L T ]
L @— ® -@— © L 2 _|
C C D D
Buckets

(i)

Figure 2-11: Monotonicity for the family UCjundom- In this figure the unit circle is
depicted by an interval of length one, which is obtained by cutting the unit circle at an
arbitrary point. (i) The mapping of points to the circle for a view V, = {A, B, C, D}
(m = 2 in this example). The closest bucket point clockwise of i’s point is one
associated with the bucket D. (ii) For any view V) C V, containing the bucket D
(here V; = {C, D}), the point closest to i’s point will still be D.

that when adding buckets to V; to get V5, none of the points that we add to the unit
circle fall in the arc between i’s point and the bucket point that it was previously
closest to in V). Thus, the item ¢ must be mapped to to the same bucket in both V;
and V; (see figure 2-11).

Before showing the bound on spread, a technical lemma is derived which is used
in both the spread and load bound proofs. The lemma shows that an arc does not
have to be very long if we want there to be high probability that at least one bucket

point from every view falls into the arc.

Lemma 2.2.5 Any fized set of measure at least ﬂ%(,:—ml in the unit circle contains

at least one bucket point from every view with probability greater than 1 — 5};,-

Proof:
Note that the probability is over the choice of the function rg. Since in the family
UCtandom all functions are equally likely, we can assume in the proof that points for

the buckets are distributed uniformly and at random around the unit circle.

52




Let X; be a random variable dencting the number of points associated with buck-
ets in view V; that fall into a set of measure l. There are at least M = =L bucket
points associated with each view (since every view contains at least T'/t buckets).
However, we can assume that there are exactly M points in each view since more
points would imply that a set with smaller measure would suffice (1more precisely, the
distribution of X; when there are more than M points stochastically dominates the
distribution when there are M points). Thus, we have E[X;] = Ml. We will choose
the value of [ so that the probability of X; being 0 is at most 1/2Nk.

Following is a use of the Chernoff bound where we could have made a more direct

argument. °
Pr[X; =0] < Pr{|X; — Ml| > M]]
< 2%
So we choose ! so that 2e~ " = 5 Nk We obtain [ = _'_05\4N’=) — 4 10;(:11*”:)

From the union bound we have:

1

P X;=0]< PrX; =0 <k—=—

[ Some | < JEI | | < 2Nk i

Thus, any set of measure %:_11_\@ contains a bucket point from every single view

with probability at least 1 — 1/2N.

We now show the bound on spread.

Lemma 2.2.6 For any item i € I, spreads(V,7) = O(tlog(Nk)) with probability
greater than 1 — 1/N over the choice of f € UCrandom-

5The direct argument is Pr{X; = 0] = (1 — !)™ since each point is mapped independently to the
circle.

93



Proof:
The proof of the lemma uses a technique that recccurs many times in this paper.
The basic idea is simple. If we want to show that some event A has low probability,

then we can proceed as follows:

1. Find a set of events B so that the occurrence of event A implies that at least

one of the events in B occurs.
2. Show that there is only a small probability that any event in B occurs.
3. Deduce that the probability of A must also be small.

More formally stated, the technique is to find a set of events B so that A C
Us,es Bi- This implies that:

Pr[A] < Pr [ U B.-] < ) PrB]

B;eB B;€eB

So, if the sum of the probabilities of the events in B is small then the probability
of A must also be small.

The first step is to define the event A and the family of events B. In our case, A
is the event that the bound on the spread does not hold. The family B contains two

events: B; and B, which are defined as follows:

1. B;: Fix an arc a of length ‘1'—'9%‘;& to the right of the point r;(7) associated
with the item 7. Denote by B,; the event that there is some view that has no
bucket point in the arc a. Note that this is, in some sense, the complement of

the event that we considered in the previous lemma (lemma 2.2.5).

2. B;: Let X be the random variable denoting the total number of bucket points
in the arc . Let B, denote the event that X is more than 8tlog(4Nk); that is,

more than 8tlog(4/Nk) bucket points fall into the arc a.

The next step is to show that the event A implies at least one of the events B,

and B,. In this case, it is easier to show the contrapositive, or: B; N B, = A.

o4



If event B, occurs, we know that every view has at least one bucket point in the
arc a. Now, for each view V, the item ¢ is mapped to the first bucket point from
V encountered in a clockwise traversal of the circle. The event B, implies that this
bucket point will be found somewhere in the arc a. So, it must be that in every
view, i is mapped to some bucket with a point in a. Therefore, the spread of ¢
cannot be larger than the total number of bucket points that fall into the arc a! If
in addition to B, event B, occurs, then we know that the number of buckets in «
is less than 8tlog(4/Nk), and hence, the spread of : must be less than 8tlog(4Nk) =
O(tlog(4Nk)). This is precisely the event A! This proves that B, N By = A.

The last and final step is to bound the probabilities of the events B, and B,.

Lemma 2.2.5 shows that Pr{B;] > 1 —1/2N, and thus Pr[B;] < 1/2N. It remains
to bound the probability of eveat B;. Ncte that there are a total of 7'm points coming
from all the views and thus E[X] = ngt_IO_%%V_IQ = 4tlog(2Nk). The Chernoff bound

implies that:

Pr[ |X — 4tlog(4Nk)| > 4tlog(4Nk)]

2 1
<9 ~tlog(4Nk) _. <
=o€ (ANEK)t = 2N

(Assuming that ¢ > 1.)
Consequently, Pr[B;] < 1/2N. To wrap up the proof we have:

PI'[A] S Pl'[Bl U Bg] S PI'[BI] + Pl'[Bg] < 1/2N + 1/2N = 1/N

This proves that the probability that the bound on spread does not hold is less
than 1/N, and thus, the probability that the bound does hold is at least 1 — 1/N.
This concludes the proof of the lemma.

The next Lemma shows the load bound.

95



Lemma 2.2.7 for any bucket b € B, load;(V,b) = O { (4 + ) log(Nmk)) with
probability greater that 1 — 1/N over the choice of f € UC\andom.

Proof:

The intuition for the proof is simple: An item that is assigned to a bucket must
fall into one of the arcs that the bucket’s points are responsible for. Lemma 2.2.5
implies that the length of the arc that a single bucket point is responsible for over all
views is not too big. Hence the total fraction of the circle that a bucket is responsible
for over all views is relatively small. Thus, only a small fraction of the items are
assigned to a bucket even if there are many views. More precisely, lemma 2.2.5 is
used to bound the length of the arc that a single bucket point is responsible for over
all views. Multiplying this length by m we get a bound on the total measure of the
set in which items could fall and be assigned to the bucket in question. We then
bound the total number of items that fall into this set, getting an upper bound on
the load.

Since in the family UC,4ndom all functions are equally likely to be chosen, we can
assume in the proof that points for the buckets and items are distributed uniformly
and at random in the unit circle. In addition, we note that item points are distributed
independently of bucket points.

The bucket b has m points associated with it in the circle. An item is assigned to
the bucket b if in some view it is closest clockwise to one of these m points among all
other bucket points.

Fix one of the m points associated with the bucket b. We examine an arc starting
at this point and going counter-clockwise around the circle that is long enough so
that in every view, there is another bucket point in the arc with probability at least

1- 51—\‘,; Invoking lemma 2.2.5 we get that the length of such an arc is given by

4tlog(8Nmk)

Tm
Now, by the union bound we have that with probability at least é‘ﬁ, the length of

the arc to the left of every one of the m points associated with b is ﬂﬁ%ﬁv—mﬂ. We
denote by A this event.

Now we have:

o6



Pt load;(V,b) > 2] = Prloads(V,b) > z | A]P1[A]
+ Pr[ load;(V,b) > z | A] Pr[A]
< Pr[ loads(V,b) > z | A] + Pr[A]
< Pr{loads(V,b) > z | A]+1/2N

It remains to bound the load on bucket b given that event A has occurred. If
event A occurs then we know that any item assigned to bucket b falls within distance
w‘%ﬁ:’—"‘kl of one of the m points associated with b. Thus, if an item is assigned to
bucket b it must fall in a set of total measure at most mitMgT%'ﬂ‘l = MM f
there is overlap of arcs then the total measure may be smaller, but this will only lead
to a better bound on the load. Therefore, all we need to do is bound the number of
item points that fall into a set of measure M‘;—Nﬂ'ﬂ.

Let X denote the number of item points in the set. The expected number of item
points is E[X] = ﬂlﬂm’%ﬁ"ﬁ. Since item points are mapped independently of bucket
points we can use Chernoff bounds on X. This unfortunately turns out to be a bit
technical. There are two cases to be considered according to the value of l%:
Case 1: 0< [; <21

In this case we use a Chernoff bound with § = g—' This gives us:

T \ 4t|I|log(8 Nmk) 1 1
— - <
Pr [X > (l + m T = @Nmk) = 2N

(Since t,k,m > 1.)
Case 2: 2e—-1< I%

I

In this case we use a Chernoff bound with ¢ = £ This gives us:

57



Py [X S (1+ _1_“) 4t|I|log(8Nmk)] < lm _
il T (8Nmk)# 0+

<
= (8Nmk)t
5N

(Since t, k,m > 1.)

Since both (1 + l_'-;.l) A logBNmk) o g (1 + Tﬁ) Sl iogormt)

0 ((%’3 + l) log(Nmk)) we have shown that for z = O ((%15 + 1) log(Nmk)):

Pr[ load;(V,b) > 2] < Pr[load;(V,b) > z | A]+ 1/2N

< 1/2N+1/2N =1/N

This concludes the proof of the lemma.

It remains to show the balance property. If we fix a particular view, then the
probability that an item is assigned to a particular bucket is exactly the total length
of the unit circle that the bucket is “responsible” for. The following lemma bounds
the total length of the set that each bucket is responsible for, and thus will be the
main step in showing the balance property (which is proved in lemma 2.2.9).

For a bucket b, denote by length(b) the measure of the set of points in the unit

circle that b is responsible for.

Lemma 2.2.8 Let V' be a fired view containing v = |V| buckets. Then with proba-
bility at least 1 — 1/N for allb € V length(b) = O (% (w + 1))

Proof:
The proof of lemma 2.2.8 is based on the same idea as the proof of lemma 2.2.6.

If we want to show that some event A has low probability, then we can find a set of

38




/

/
events B so that the occurrence of event A implies that at least one of the events in

B occurs. Then, if we show that there is only a small probability that any event in B
occurs, then the probability of A must also be small.

In our case the event A is that some bucket b has length(b) greater than the
value stated in the lemma. Recall that the part of the unit circle that the bucket b
is “responsible” for is broken up into m non-overlapping arcs. One (not good) set
of events B is obtained by observing that if b is responsible for a set of measure p,
then there is a collection of m arcs of total length p (with right ends at the m points
associated with ) in which no other bucket point falls. Thus each event in B is
described by a set of m arcs of total length p, into which no other bucket point falls.
The problem is that there are uncountable many ways to divide length p among m
arcs. Since we want to use a union bound to bound the probability that any event
from B occurs, the set needs to be finite!

We make B smaller by discretizing the circle and counting the number of ways
to distribute total length p by discrete units. This is of course finite, and the error
introduced by the discretization turns out to be small. We now formalize the above
argument.

Recall that a bucket point is responsible for an arc if the bucket point is on the
right end of the arc, there is no bucket point in the interior of the arc, and some other
bucket point is on the left end of the arc. A bucket b is responsible for the union of
the m arcs that the points associated with b are responsible for.

The main result is that the probability a single bucket b is responsible for more
than an O ( 1 (lﬂgy—"l + 1)) fraction of the unit circle is at most 1/Nv. The union
bound then implies that none of the v buckets are responsible for more than an
0] (% ('35(,,1-:'—”1 + 1)) fraction of the circle with probability 1 — 1/N.

To show the main result, we begin by fixing a bucket b. The portion of the unit
circle for which b is responsible must consist of m non-overlapping arcs in the circle,
each bounded on the right by one of b’s points. Suppose we shrink all these arcs by
moving the left endpoints rightward, until the length of every arc is a multiple of

A= % (o will be set later). Since there are m of these arcs and each shrinks by at

99



most A, the decrease in the total length of all arcs is at most 4%. So if the total length
of these arcs after shrinking is 42 , then the total length before shrinking is at most
42442 = 82. This implies that if bucket b is responsible for a 8% fraction of the unit
circle, then b must be responsible for every point in a collection of non-overlapping
arcs, each bounded on the right with one of b’s points, each a multiple of A in length,
and with total length 42.

Now, given a collection of arcs of total length 42 we will bound the probability
that in these arcs there is no point associated with some other bucket. The expected
number of the mv — m points falling in this collection of arcs is 49-"—'%’;11. So we have

from a superfluous use of the Chernoff bounds:

PrlX=0] < Pr[(X- 4am$) > 4am]

v=—1

S e-—am—u——

The number of collections of m arcs with total length 47"‘ and with all lengths
multiples of A is exactly the number of ways to partition 47"‘ /A = m into m integral

parts, which is:

By the union bound, the probability that any of the above collections of arcs

contains no point associated with other buckets is at most:

-1 -1
=2 2m —(am*+=~2m)

—am"e =e

(&

We will choose o so that this probability is at most 1/(Nv). which gives:

a=0(l—qg—("]:,—v)-+l)

60




This proves that with probability at least 1 — 1/(/Nv) the total length assigned to
a bucket is at most 8 = O(2 ('35%’-9)- + 1)) Now since there are v buckets the same
bound holds for all buckets with probability 1 — 1/N by the union bound.

We now prove the balance bound given in theorem 2.2.3.

Lemma 2.2.9 For any fized view V and item i, the probability that item i is mapped

to bucket b in view V is O (ILVI (m%:-ml + 1)) + 5

Proof:

Denote by A the event that for every bucket b in the view V we have length(b) =
0 (f‘lf—l (‘-95%}1‘1 + 1)) Lemma 2.2.8 says that the probability of A is at least 1—1/N.
Now for any b e V:

Pr[ fu() =8 = Prl fu(i) =b| A]Pr{4]
Pr[ fy (i) = b| 4] Pr{A]
Pr[ fy (i) = b] A] + Pr[4]

Pr[ fv(d) =b| A]+1/N
(i (22221

Since, given that event A has occurred, the probability that item 7 is mapped to

AN o

IA

any particular bucket b is exactly length(b) (the mapping of items is independent of
the mapping of buckets) which is O (ILVI (Eﬁ%lﬂl + 1))
]
This concludes the proof of theorem 2.2.3. We state and prove one corollary of

theorem 2.2.3 that is useful for various applications.

Corollary 2.2.10 With the same conditions as theorem 2.2.8, the probability that an

item ¢ is mapped to a bucket b in at least one of the views is O (M;vﬂ)) + ﬁ

61



Proof:

We saw in the proof of lemma 2.2.7 that with probability at least 1 — 1/N, the
bucket b is not responsible for more than a O (M,;M) fraction of the circle over all
views. Using the same argument as in the proof of lemma 2.2.9, the corollary follows.

2.2.4 A Practical Consistent Hash Family

In the previous section, we showed that the family UCgngom has good consistency
properties: the family is monotone, spread and load grow logarithmically with the
number of views, and the family has the balance property.

However, there is a drawback to the family UC)4n40m; it requires manipulation of
real numbers. More specifically, storing a function requires infinite space, and fur-
thermore, choosing a function from the family requires an infinite number of random
bits.

In this section we remedy these problems by modifying the basic construction in
two simple ways. We show that limited independence in the mapping of points to
the circle suffices for the family to have the same consistency properties as UC}andom-
Using limited independence reduces the number of random bits required to choose
a function from the family, and reduces the space required to store a function from
the family. Furthermore, we show how to use limited precision in the real numbers
used in the basic construction, thus eliminating the need to manipulate arbitrary real
numbers. In section 2.2.4 these two modifications are combined to construct a new,
more practical hash family. An implementation of this family, which is remarkably

simple and efficient, is presented in section 2.2.5.

Using Limited Independence

We say that a family of functions is k-way independent if any k elements from the
domain are mapped independently into the range when we choose a function at ran-

dom from the family. In other words a family is k-way independert if for any distinct

62




z;, 1 <1 < k from the domain of the family, and any y;, 1 < ¢ < k from the range of
the family:

k
Pl'[f(zl) =y, f(z2) = ¥2,. .. 1f(1'k) = yk] = HPT[f(CL‘i) = yi]
i=1

Where the probability is over a random choice of function f from the family.
Another way of looking at this is that the random variables {f(z)} where 7 ranges
over the domain of the family are k-way independent.

As an example, consider the linear congruential hash family introduced in exam-
ple 1. This is a 2-way independent family. We showed that the number of random
bits required to choose a function from the family and the space required to store a
function from the family are very small compared to a completely random function.
These are exactly the reasons that we are interested in using limited independence
mappings.

We show that if UC,4n40m is modified so that items and bucket copies are mapped
to the circle using limited independence, then the consistency properties of the family
remain unchanged.

The basic tool used is the following theorem from[17] that shows that Chernoff

bounds apply to cases with certain limited amounts of independence.

Theorem 2.2.11 If X is the sum of k-wise independent random variables each of

which is in the range [0,1] with p = E[X], then:

e Foranyé>1 and k > [0p]:
Pr(| X —p | > 6] <
o Forany§ <1 and k > |6%pe~'/3|:
Prl| X — u | > oy < el =5

The only probabilistic tool used in the proof of theorem 2.2.3, which states the

63



consistent properties of the family UCapndom, is the Chernoff bound on sums of indi-
cator variables (other than the union bound which is true regardless of independence
of mappings). Theorem 2.2.11 implies that the claims of theorem 2.2.3 are still valid
even if item and bucket points are mapped to the circle with only limited indepen-
dence and not completely randomly as assumed in the proof. In fact, we show that if
the bucket and item points are each mapped Q(t log(NTk))-way independently then
all the bounds of theorem 2.2.3 still hold.

Theorem 2.2.12 If bucket copies and items are mapped to the unit circle using
Q(tlog(NTk))-way independent families, then, as long as item points are mapped
independently of bucket points, theorem 2.2.8 still holds.

Proof: Monotonicity is not affected by the independence of the mappings.

We need to check that each of the Chernoff bounds used in the proof of spread,
load, and balance are still valid with only Q(tlog(NTk))-way independence. Recall
that the proof of theorem 2.2.3 was divided into lemmas 2.2.6, 2.2.7, and 2.2.9.

For each of lemma 2.2.5, lemmas 2.2.6 and 2.2.7, and also Jemma 2.2.8 we will

show that using a function with Q(tlog(N Tic))-way independence is sufficient.

o Lemma 2.2.5: The proof uses a Chernoff bound with § =1 and p = ﬂ"%—gf-vf—)-.
Invoking the first case of theorem 2.2.11 we see that we need [ﬂ‘%iﬁ'ﬂ] -way
independence. Since this is O(tlog(NTk)), lemma 2.2.5 holds.

e Lemma 2.2.6 (spread): The proof uses lemma 2.2.5 that we showed above
holds. The proof of the spread bound (lemma 2.2.6) contains one more Chernoff
bound with 6 = 1 and p = 4tlog(2Nk). From the first case of theorem 2.2.11
we see that €(tlog(NTk))-way independence suffices.

e Lemma 2.2.7 (load): The first part of the proof relies on lemma 2.2.5 which
we have shown still holds. Item points are mapped independently of bucket
points so the remaining Chernoff bound is still valid as long as we have enough
independence: There are two cases to consider depending on whether T'/|I] is

larger or smaller than 1.

64



Case 1: T/|I| < 1

In this case we use a Chernoff bound with parameters 6 = \/T—/m < 1 and
0= it_l_ljlﬁqg:ilv_mkz. We apply the second case of theorem 2.2.11 and observe that
Q(tlog(NTk))-way independence suffices. This case then parallels the case of
T/|I| < 2e — 1 in the proof of lemma 2.2.7.

Case 2: T/|I| > 1

In this case we use a Chernoff bound with parameters § = T/|I| > 1 and
u= ﬂm'ﬂ;},ﬂvﬂl. We invoke the first case of theorem 2.2.11. This case then
parallels the case of T//|I| > 2e — 1 in the proof of lemma 2.2.7.

e Lemma 2.2.8 (balance): The proof relies on a Chernoff bound with § = 1
and g = O(log(NT) + m). Invoking the first case of theorem 2.2.11 we see
that Q(tlog(NTk) + m)-way independence suffices, however if we choose ¢ =
O(log(T)), then Q(tlog(NTk))-way independence suffices. The proof also relies

on the fact the item points are mapped independently of bucket points.

Using Limited Precision

In this section we show how to use limited precision for representing real numbers for
the unit circle hash function. The next section defines the final practical hash family
and proves its properties.

The basic idea is simple. Each function in the family UC4540m is defined by a total
of |I|+m|B| random points on the real unit circle. The important observation is that
what really matters about these points is their clockwise ordering arcund the circle.
Given just the clockwise ordering of all the points, we can reconstruct the mapping
of every item in every view. An item 7 is mapped to a bucset b with a point closest to
the point of ¢ in the clockwise ordering. The following lemma shows that the ordering

on a set of |I| + m|B| random points is with high probability, already completely

65



defined by the O(log(|I| + m|B|)) most significant bits of the binary expansions of
the points.

Lemma 2.2.13 With probability at least 1 — 1/N', the clockwise ordering on n ran-
dom points in the unit circle is determined by the 2log(N'n) most significant bits of

the points. (N' > 1 is an arbitrary confidence factor.)

Proof:

The probability that any two of the numbers can not be distinguished by their
2log(N'n) most significant bits is 1/(N'n)? (since the probability of an infinite se-
quence of 0’s or 1’s is zero). By the union bound, the probability that any of the
(g) < n? pairs of points are not distinguished by their 2log(N'n) most significant
bits is less than (1/N')?> < 1/N'.

Thus, for each point we need no more than 2log(N'n) bits to determine the
ordering with probability at least 1 — 1/N’.

The following simple corollary shows that lemma 2.2.13 holds even if the points

are distributed only k-way independently for k > 2.

Corollary 2.2.14 Lemma 2.2.13 holds if the points are distributed uniformly and
k-way independently for any k > 2.

Proof: The corollary follows from two observations. The first observation is that
if the points are k-way independent, then the bits at a fixed place in the binary
expansion of the points are k-way independent. The second observation is that in the

proof of Lemma 2.2.13 we only used 2-way independence of these bits. =

Putting it all Together

This section describes the hash family obtained by modifying UC,sniom to use f iite
precision, and limited independence mappings. This family is called UC.
Let ¢ = O(log(N'(m|B| + |I|))) for an arbitrary confidence factor N' > 1. The

family UC is defined in the same way as UC;angom €xcept in the following aspects:

66




e Item and bucket copies are only mapped to points on the unit circle that can

be represented by no more than ¢ bits of precision.

o Item and bucket points are mapped to to the unit circle Q(tlog(NTk))-way
independently, but items points are mapped independently of bucket points.
In other words, the items and bucket copies are mapped by Q(tlog(NTk))-way
independent families of functions, and that the mapping of items is independent

of the mapping of buckets.

Note that now, unlike the continuous case, when we choose a random function
from the family there is a positive probability that two bucket copies, are mapped to
the same point. If this happens we do not have a well defined hash function (since we
do not have a well defined order on the points), so in this case we use some arbitrary
fixed order of the buckets. Corollary 2.2.14 implies that the probability that we choose
a “bad” function from the family is less than 1/N’, and this probability can be made
arbitrarily small by making N larger (using more bits of precision).

Let A denote the event that we choose a “bad” function from the family. Putting
together theorem 2.2.12 and the fact that Pr[4] < 1/N’, we obtain the following

theorem:

Theorem 2.2.15 If the the mappings of items and bucket copies are Q(tlog(NTk))-
way independent (N is the confidence factor in theorem 2.2.8), items are mapped
independently of bucket points, and // ¢ = O(log(N' (m|B| + |I|))) bits of precision
are used then theorem 2.2.8 holds with probability at least 1 — 1/N'.

In the next section we show that UC is remarkably simple to implement, and that

the implementation is very efficient.

2.2.5 Implementation

In this section, we describe how to practically implement the consistent hash family
UC. Three parameters are used throughout the description of the implementation.

The first is a prime p used for discretization by restricting attention to p evenly spaced

67



points around the circle. The parameter p can be chosen to be (N'(m|B| + |I]))°®
since the previous section shows that only numbers represented by O(log(N'(m|B| +
|1]})) bits need be considered for the hash family.® The second parameter is m, the
number of points on the unit circle associated with each bucket. The parameter m
is O(log(|B|)). Finally, items and buckets are associated with points on the unit
interval k-way independently. The previous section shows that we may choose & to
be Q(tlog(NTk)).”

We assume that items and buckets are both numbered 0 to p — 1. (A bucket and
an item may have the same number.)

Our implementation relies on two standard tools, a balanced binary tree data
structure and a way of obtaining k-way independent random variables. These tools are
described in the first subsection. Following this, we show how to implement four basic
hashing operations: choosing a random hash function from a family, adding a bucket,
removing a bucket, and hashing an item to a bucket. First a simple implementation is

presented, and then a slightly more complicated but faster version is briefly outlined.

Standard Tools

We will need to maintain a set of ordered keys. For this purpose, any standard

balanced binary tree structure will suffice. We assume the following operations:

CreateTree() Return a new, empty binary tree.
AddKey (T, K) Add key K to tree T.
DeleteKey(T, K) Delete key K from tree T.

NextKey(T, K) Return the smallest key in T greater than or equal to K. If there is

no such key, return the smallest key in 7.

8N’ is the ,parameter that controls the probability of choosing a “bad” function from the family.
The larger N’ is, the more bits of precision need to be used in the representation of the family. In
this implementation more bits of precision implies a larger p.

"N is the confidence parameter in the statement of theorem 2.2.3.

68



The last three operations run in time O(logn) where n is the number of keys in
the tree.

We will also need to generate k-way independent, random points on the unit circle.
This is equivalent te generating k-way independent. integers in the range 0,... ,p—1;
that is, elements of the field Z,. (Recall that we are restricting attention to points in
only p positions, evenly spaced around the circle.) A standard solution is to choose k&
random elements of Z, and to regard these as coefficients of a degree £ — 1 polynomial.
Evaluating this polynomial at 0,...,p — 1 over Z, gives a set of p values that are

k-way independent and lie in the range 0,... ,p—1. The following lemma, proves this.

Lemma 2.2.16 If Q is a random degree k — 1 polynomial over the field Z, for a
prime p, then for any distinct z,,z,,... ,2¢ € Z, and any y1,Y2,... , Y« € Z, we

have:

k
PI'[Q(QFI) =y, Q(z2) =92, ... ,Q(zk) = yk] = HPT[Q(fEi) = yi]

Proof: Since determining the values of a degree k& — 1 polynomial at the k points
ziy,...,Z determines the coefficients of the polynomial uniquely, the left hand side is
equal to 1/p* (the probability of choosing these uniquely determined k coefficients).
Since the value of random polynomial at any fixed point is random, the right hand

side is also equal to 1/p*. =

This method for generating k-way independent random variables still assumes the
existence of some random bits (used to choose the random polynomial). However, the
number of bits needed is far less that what would be required to generate p completely

random values in Z,.

Hashing Operations

In this section, we show how to implement four basic hashing operations. These
are: choosing a random hash function from the family, adding a bucket, removing a
bucket, and hashing an item to a bucket. Pseudo-code for these four operations is

shown below.

69



ChooseHash()

Choosge random polynomials P and Q_1, ..., Q_m of degree k-1.

AddBucket (T, b)

for i =1tonm

AddKey (T, (Q_i(b), b))

RemoveBucket (T, b)

for i =1 tom

DeleteKey(T, (Q_.i(b), b))

Hash(T, i)

(f, b) = NextKey(T, (P(i), 0))

return b

The first step is to choose a hash function at random from a family. This is
done with a call to ChooseHash(). This function picks random polynomials P and
Q1,... ,Qm of degree k — 1. The polynomial P will be used to map items to points
on the circle k-way independently. The Q polynomials will be used to map each
bucket to m points on the circle k-way independently. If several people plan to use
the same hash function, then one person should generate these random polynomials
and distribute them to the other people.

A binary tree is used to keep track of the current view. One must initially create
an empty binary tree T with CreateTree() and supply this tree as an argument to all
subsequent functions. The keys that will be stored in the tree are pairs (f, b) where f

is an element of the field Z, and & is a bucket. That is, each key is a point on the unit

70



circle and the bucket associated with it. The pairs are kept in the dictionary order,
i.e. primarily based on the value of f, but based on the value of b when necessary to
break ties. In effect, the tree records all points associated with available buckets in
the order these points appear clockwise around the circle.

The tree T' must be updated when a new bucket becomes available or when a previ-
ously available bucket is discarded. In other words, the tree T' must reflect the current
view. These updates are done with the AddBucket (T, b) and RemoveBucket (T, b)
operations. These functions maintain the invariant that for each available bucket b,
the tree stores pairs (Q;(b),b), ... ,(Q@m(d),b). Intuitively, this just means that the
tree records all of the points associated with available buckets. Both AddBucket and
DeleteBucket run in time O(mk + mlogmv) where v is the number of buckets in
the current view.

The actual work of hashing is done with the Hash(T, i) operation. This function
returns the bucket b to which item 7 is assigned in the view described by the tree
T. Recall that an item should be assigned to the bucket whose point is the first
encountered when the circle is traversed clockwise from the item’s point. This is
precisely the effect of the call to NextKey.

There is one technicality in the implementation of Hash. Suppose two buckets,
by and by, are both associated with the same point f. Then there may be some
ambiguity about whether an item is assigned to b; or b,. In the implementation,
the item is always assigned to the lower-numbered bucket. This follows from the
dictionary ordering of keys and from choosing zero as the second argument to NextKey.
Recall however that the probability of this happening can be made arbitrarily small
be choosing a larger confidence factor (using a larger field by making the prime p
larger).

The Hash operation runs in time O(k + log mv) where v is the number of buckets

in the current view.

71



A Faster Method

‘The Hash operation of the previous section runs in time O(k + log mv) where v is the
number of buckets in the current view. In this section a faster method, with hash
time O(1), is described. The idea is simple: The unit circle is divided into roughly
mu arcs of equal length, and a separate search tree for each arc is maintained. Thus,
the Hash operation boils down to determining in which arc the item point falls, and
then searching for the corresponding bucket in that arc’s search tree. Determining
in which arc an item point falls is a simple task that requires constant time (in a
RAM model). If bucket points are distributed randomly around the circle, then the
expected number of points in each segment is O(1), and thus the time to determine
the bucket is also O(1) in expectation (the expectation is over the choice of function
from the family UC).

One caveat to the above is that as the set of buckets in a view grows, the size of
the arcs needs to shrink. The following trick solves this problem: only arc lengths of
1/2% for some x are used. At first, we choose the smallest x such that 1/2* < 1/mu.
Then as points as added, we bisect the arcs gradually so that when we reach the next
power of two, all of the arcs have already been divided. In this way we amortize the
work of dividing search trees over ail of the additions and removals. Another point
is that the search trees in adjacent empty arcs may all need to be updated when a
bucket is added since they may all now be closest to that bucket. Since the expected
length of a run of empty intervals is small, the additional cost is negligible. We do

not include a detailed analysis of this method here.

The Independence Pitfall

In this section we describe a pitfall that could be encountered while implementing our
hash function. There is a strong temptation to say, “Well.. we probably don’t need
all that much independence for our mappings - lets try and get by with less!”. In this
section we show that Theorem 2.2.3 does not hold if substantially less independence

is used in the mappings of item and bucket points to the circle. That is, if we try and

72




economize too much on randomness, then there exists a set of views that will cause
an item to have large spread, or a bucket to have large load; no matter which function
from the family we choose! Note however, that for applications where the full power
of theorem 2.2.3 is not required, less independence (and thus less randomness) may
be perfectly adequate.

Assume that there are p items and p buckets, and that items and buckets are
mapped into a circular array of length ©(p) by degree k random polynomials. An item
is mapped by sweeping clockwise around the array until a bucket point is encountered.
If multiple bucket points are in the same cell of the array, then we use some arbitrary
but fixed order on the buckets to break ties. Assume that there is an adversary who is
trying to foil the hashing scheme by concocting a devious set of v views that somehow
force the family to “malfunction”. Of course, the adversary still has to play by the
rules so he has to present views that contain at least p/t buckets. How well can the
adversary do? We proved that if k£ is a constant times ¢logpv, then the adversary
can’t make an item have spread more than roughly log v or a bucket have load more
than roughly logv with high probability. The question is what happens for smaller
values of k? We show that for smaller values of k, the adversary can do better, and

we exhibit good strategies for the adversary. For clarity assume that ¢ = 3.

Spread:

Say that the adversary is trying to cause an item i to have large spread. The
item 7 can be mapped to one of p possible starting points (the point from which
the clockwise sweep starts). Fix one possible starting point. Each of the p* possible
mapping of buckets to the array induces an ordering of the buckets with respect to
the starting position of 2: The order in which bucket points are encountered starting
from ¢’s point and sweeping clockwise around the circle. Fix a possible ordering. The
adversary uses the set of 2p/3 views that are missing all of the prefixes of length less
than 2p/3 of this ordering. Assuming that ¢ is mapped to the chosen starting point,
and that the buckets are mapped according to this fixed ordering, this set of views
forces the spread of ¢ to be 2p/3. Doing the same for all p possible starting points for

i and all p* possible orderings of the buckets gives a set of p x p* x 2p/3 = 2p?** views

73



that force the spread of i to be 2p/3. However, recall that the adversary can only
give us v views. The strategy is to cvenly distribute these v views over all possible
starting points and bucket orderings. This strategy guarantees that the spread of i
will be roughly v/p'**. So, for a fixed k, the spread can be made to grow roughly
linearly with the number of views v.

Note that setting k = logv, as required in the statement of theorem 2.2.3, foils

the above scheme!

Load:

The situation for load is similar to that of spread. Say that the omnipresent
adversary is trying to make bucket b have large load. The adversaries strategy is
for every possible starting point, and every ordering of the buckets, to use the view
missing the prefix of the ordering so that the bucket b is the first encountered point.
Using these p x p* views, no matter what function we choose from the family, every
item will be placed at least once into b. Note however, that if b appears in the last
p/3 buckets in the ordering, then the resulting view has size less than p/3. These
small views are not included, but they will only keep about a third of the items from
being placed in b. Hence, using about p**! views the adversary can guarantee that
the load on a bucket will be roughly p (up to a multiplicative constant). Again, since
the adversary is restricted to only use v views, we distribute them evenly over all
starting points and all bucket orderings. This gives load of roughly v/p* on b, so for
fixed k the load can be made to grow linearly with v.

As before, setting k¥ = logv as required by theorem 2.2.3, foils the adversary’s

scheme.

2.2.6 A Different Adversarial Model

In this section we introduce into our already hostile world a new type of adversarial
figure: the “bucket killer” adversary. The bucket killer adversary has the power, and
need, to permanently remove up to d buckets from the total set of buckets B. As a

motivation for this new type of evil, consider an adversary that can crash up to d

74



servers in our simple caching scheme.

The goal of the bucket killer adversary is to overload some of the remaining buckets
(i.e. servers). Thus, one strategy of the adversary could be to attempt to destroy
some of the buckets so that one of the remaining buckets is responsible for much more
that its fair share of the unit circle. If the adversary is successful in doing this, then
the unlucky bucket targeted by the adversary gets more than its fair share of items.
Note that we are assuming that the bucket killer adversary is aware of the random
choice of hash function, Thus, the standard solution of putting up a smoke screen by
adding randomness to the scheme is not effective gainst the bucket killer adversary.

In this section, we show that with a trick, we can protect ourselves agains. ;uch
an adversary - even if he/she is aware of our random choices. The trick is very simple:
just use more points per bucket in the standard scheme. In fact, to tolerate a bucket
killer adversary that has the power to crash d buckets, we only need to multiply the
number of points-per-bucket by a factor of about d.

More precisely, we prove the following theorem:

Theorem 1 Let B be a set of buckets, and let {V},...,V,} be the set of views obtained
from B by deleting at most d buckets. Then, if we use m' points per bucket where
m' = ©(dm), then with probability greater than 1 — 1/N, for every V € {V4,...,V.},
and b € V, length(t) = O (b (182D 4 1))

Vi

Note that if we choose m = §(log(|B|), and N = poly(|B|), we get that the bucket
killer adversary cannot harm the balance property of the hash family.

In other words, using the trick, no matter what buckets the bucket killer adversary
decides to remove, the remaining buckets still divide the responsibility for the circle
roughly evenly, with high probability.

Proof:

The proof is as simple as the trick itself. We invoke 2.2.8, replacing the confidence
factor N with N¢|B|¢ (¢ is an arbitrary constant), to show that for any particular view
in the set {V},...,V;}, the probability that any bucket is responsible for more than

the stated fraction of the circle is less than zzg. Now, since clearly r = O(|B|%),

75



we obtain the result from a union bound.
s
Theorem 1 shows that if we want to tolerate a bucket killing adversary that can

delete d buckets, we should use a factor of d more points than before.

2.2.7 Theory of Consistent Hashing

In this section we introduce a new type of ranged hash family we call a 7-hash families.
This new class of functions may seem very restricted at first, however, we prove that
in fact, every monotone ranged hash function is actually a 7-hash function, and visa
versa. This correspondence allows us to study the entire class of monotone ranged

hash families by studying w-hash families in particular.

Definition 1 A 7-hash function is a ranged hash function of the familiar form f :
2B x T — B constructed as follows. With each item i € I, associate an arbitrary list
m(i) of all the buckets B. (We will call such a list a permutation.) Define fy () to be

the first bucket in the permutation w(i) which is contained in the view V.

Theorem 2.2.17 Every monotone ranged hash function is a w-hash function and

vice versa.

Proof: First, we show that every n-hash function f is a ranged, monotone hash
function.

By the definition of a m-hash function, items are always assigned to usable bins:
that is, fi/(Z) C V for every view V. Therefore, f is a valid ranged hash family. Now
suppose all the items were initially assigned to a subset of the buckets. If some new
buckets are now added, then an item i is reassigned only if a new bucket appears
earlier than the item’s current bucket in 7(i). Therefore, an item may move from an
old bucket to a new bucket, but not from one old bucket to another. This implies
that f has the monotone property.

Next we show that every monotone ranged hash function is a w-hash function. Let

g denote a ranged hash function with the monotone property. We must show that

76



g associates each item i with a permutation 7(i). Furthermore, we must show that
gv i) is the first bucket in the permutation 7(z) which is in the view V.

We associate item ¢ with the permutation 7(z) constructed as follows. Let the first
bucket be b; = gg(i), let the second bucket be b, = gg_(5,)(%), and generally let the
k+1 bucket be by, = gg_{s,..5,}(¢). Now let V; be an arbitrary view, and let b be the
first bucket in m(¢) which is in the view V;. Consider the view Vo = B —{b; ... bt_,}.

Since V) C V, and gy, () = bx € Vj, monotonicity implies gy, (¢) = by as desired. [

The equivalence stated in Theorem 2.2.17 allows us to reason about monotonic
ranged hash functions in terms of permutations associated with items.

One property of ranged hash families that is not captured well by the notion of
balance is what we call uniformity. A hash family is uniform when items are assigned
to buckets with absolute uniform probabilities. That is, when the probability that an
item 17 is assigned to a bucket b € V is ezactly 1||V|.

Uniformity: A ranged hash family is uniform if, given any particular view V an
item 7, and a bucket b € V, the probability that item 7 is mapped to bucket b in view
V is ezactally 1/|V|.

Given theorem 2.2.17, one of the most natural monotone ranged hash functions is
obtained by choosing the permutations independently and uniformly at random for
every item. We denote t! ' resulting family by function by F,. One nice property of
this family is that in addition to having good spread and load characteristics, it is

also uniform.

Theorem 2.2.18 Let V = {V},Va,...,Vi} be a set of views of the set of buckets B
such that: lUf___l V,' =T andforalll < j <k, |V;| >T/t. Let N > 1 be a confidence
factor. Then the following propoerties hold: "

e Monotonicity: The family F, is monotone (regardless of V and N ).

o Spread: For any item i € I, spreads(V,i) = O(tlog(Nk)) with probability
greater than 1 — 1/N over the choice of f € F;.

77



® Load: For any bucket b € B, load;(V,b) = O ((1%.'3+ 1) log(N|I|k)) with
probability greater than 1 — 1/N over the choice of f € F,.

e Uniformity: The family F, is uniform.

Proof: Mounotonicity and uniformity are immediate; this leaves spread and load.

We first consider spread. Recall that in a particular view, item i is assigned to
the first bucket in 7 (¢) which is also in the view. Therefore, if every view contains
one of the first s buckets in 7(z) then in every view item i will be assigned to one of
the firsi s buckets in 7(z). This implies that item i is assigned to at most s distinct
buckets over all the views.

We have to show that with high probability every view contains one of the first s
buckets in m(:). We do this by showing that for s = tlog(Nk), the complement has
low probability; that is, the probability that some view contains none of the first s
buckets is at most 1/N.

The probability that a particular view does not contain the first bucket in w () is
at most 1 — 1/¢, since each view contains at least a 1/t fraction of all buckets. The
fact that ... first bucket is not in a view only reduces the probability that subsequent
buckets are not in the view. Therefore, the probability that a particular view contains
none of the first s buckets is at most (1 — 1/t)* = (1 — 1/¢)(16(V) < 1/(N). By the
union bound, the probability that even one of the k views contains none of the first
s buckets is at most 1/N.

We now turn to load. By similar reasoning, every item i in every view is assigned
to one of the first ¢ log(NkI) buckets in 7 (i) with probability at least 1 —1/(2N). We
show below that a fixed bucket b appears among the first ¢ log(2NkI) buckets in (1)
for at most { = O ((]—,I;,E + 1) log(N|I|k)) items ¢ with probability at least 1—1/(2N).
By the union bound, both events occur with high probability. This implies that at
most | items are assigned to bucket b over all the views.

All that remains is to prove the second statement. The expected number of
items 7 for which the bucket b appears among the first tlog(2NkJI) buckets in 7 (i) is
Itlog(2NkI)/C. The result then follows from a use of the Chernoff bound similar to

78



that in lemma 2.2.7.

There are some problems with the family F,. For example, to choose a random
function from the family requires about |I||B|log(|B|) random bits. Moreover, it is
unclear how to efficiently compute the function.

In order to better understand how to construct efficient (small) families of #-hash
functions we study the following model: Assume that there is some fixed set P of
permutations of the buckets. Each function in the family is obtained by randomly
selecting for each i € I, one of the permutations in P (this selection may or may not
be uniform).

For example, the family ¥, is obtained by taking P to be the set of all permuta-

tions on the buckets. We ask the following questions:

e Does there exist a set P of permutations much smaller than |B|! that gives a

uniform ranged hash family?

e Say that we choose the set P to be a set of k-way independent permutations
(see for example [12]). Does this give rise to a uniform family? Is the resulting

hash family k-way independent for a fixed view?

79



Chapter 3

Random Trees

In this chapter, we introduce our second main algorithmic tool we call random trees.
‘The random tree protocol is a replication mechanism that is designed to make copies of
pages according to their relative popularity, and then to distribute requests between
the copies. The objective is to eliminate hot spots, that is, prevent servers from
becoming swamped by a huge number of requests for the same data. A key feature of
the protocol is that copies are made before the data become so popular that servers
could be swamped. In addition, the protocol works without any centralized control.
Each cache runs the same simple, local protocol and the combined behavior of all
the caches gives rise to the global replication and load balancing properties of the
algorithm.

We begin the chapter in section 3.1 with an intuitive presentation of the main
ideas behind the protocol. Next, in section 3.2 we discuss our theoretical model of
the problem. This model is very simplistic, but allows us to prove that the random
tree protocol works well, albeit in the simplified model. In section 3.3 we describe the
random trees protocol formally, and in section 3.4 we prove that the protocol prevents
swamping. In section 3.4.3 we prove that the storage requirements of the algorithm
are not very large.

A crucial component to the random tree protocol is a hash function that is used
to distribute caches over the nodes of a tree. Standard hashing could be used in this

context, however, as is explained in the previous chapter, the resulting system would

80




not function well in a changing environment. Therefore, in section 3.5 we discuss
how a consistent hash function can be used to implement the random tree protocol to
produce a system that eliminates hot spots without requiring huge storage space and
also tolerates incomplete and inconsistent information on the status of the network.
The proof that this construction works ic contained in (7).

In section 3.6 we discuss how to add to the model of the problem a way of repre-
senting network topology we call a network ultrametric. We then show how to modify

the basic random trees protocel to take the network ultrametric into account.

3.1 Random Trees

The simple caching algorithm described in section 2.1 does a good job of distributing
the load of serving a group of pages that are all accessed at the same low frequency
between a network of caches. The scheme, however, does not perform well for swamp-
ing caused by a few very popular pages that are stored on a single server. We call
this type of load concentrated load. An example of concentrated load is the web site
of a software company when a popular software upgrade is made available. Simply
reassigning the very popular page to another server does not solve the problem since
the new server will become overloaded just like the old one. In order to reduce the
load without causing high Joad on other servers, the hot page needs to be replicated
more than once in the network. Balancing requests for the hot page over these mul-
tiple replicas can relieve load on the original server without overloading any other
server. The more popular a page is, the more copies need to be made in the network.
However, it is difficult to predict how popular a page is going to be, so the replication
mechanism must adapt to changing popularity of pages. In the following sections, we
introduce a new algorithmic tool called Random Trees that can be used in a caching

algorithm to deal with concentrated load.

81



Caching
Machines

Figure 3-1: The server S is “protected” from swamping by a hierarchy of caching
machines arranged in a tree with S as the root.

3.1.1 Trees

Say that p is a hot page that is stored on a server S. The basic scheme is to “protect”
S from being swamped by putting a hierarchy of caches between S and the clients
requesting the page p. The hierarchy is organized as a tree with S as the root (See
figure 3-1). When a client wants to retrieve the page p, it chooses a random leaf of the
tree of caches and directs its request to that cache. The request is then propagated
up the tree until a copy of the page p is encountered. If none of the caches along
the way have a copy of p, the request my have to travel all the way up to the server
S. However, if one of the caches along the way does have a copy, then the request
stops there and does not continue along up the tree to the server S. Once a copy of
the page has been found, the page is returned to the client by going down the tree
along the same path it came up. While the page is being returned to the client, all
the caches along the path up the tree also store a copy of p to be used to answer
subsequent requests.

This simple protocol effectively balances the load of requests for the hot page p
between the caches in the tree. Figure 3-2 illustrates how the protocol works. The
server S is the root of the tree, and initially is the only location where p is stored (a
dark circle denotes places where a copy of p is stored). When the first request for p is

made, a random leaf of the tree is selected by the client, and the request propagates

82



from the leaf all the way to the server S at the root since no caches contain a copy of
P (See figure 3-2 (i)). After the first request has been serviced, all the caches along
the path from the leaf to the root receive a copy of p (figure 3-2 (ii)). The next
request starts again at a random leaf of the tree. Again, the request goes all the way
up the tree to the server S, and subsequently, p is copied all the way down the path
(figure 3-2 (iii)). At this point, the server S has received two requests for p. The
important feature of the system is that from this point on, S will not receive any
more requests for p as long as the caches at the second level of the tree do not evict
p from their storage space. After a few more requests for p are made, all the caches
on the third level of the tree have a copy of p (see figure 3-2 (iv}), and so on.

The more requests there are for p, the lower in the tree this “cutoff” level is. Since
lower levels of the tree are wider (i.e. they contain more caches), requests for p are
distributed among more caches as more requests for p are made. Randomly selecting =
leaf insures that requests are distributed relatively evenly between the caches that are
on the cutoff level. To summarize: the algorithm adapts automatically to changing
popularity of pages. As a page is requested more often, it is spread into more caches,
and the requests are distributed evenly between these caches.

3.1.2 Complications

The tree scheme works well to balance the load caused by a single page p between
the caches. However, if there are requests being made for many different pages, the
scheme can swamp some caches.

Suppose that there are 500 servers each with a single page. Say that each server
has the same tree of caches protecting it from being swamped with requests for its
page. Now, if the caches are all empty, and at the same time a request. for each page
is issued, then the caches on the second level of the tree receive 500 requests! One
for each different page! Since there are far more that 500 pages on the web, this
scheme would swamp the caches on high levels of the tree. Of course one solution
to this problem is to install more powerful machines at these top levels so that they

can tolerate the higher load. However, this solution lacks scalability if for example

83



Random .
(iii) Leaf )

Figure 3-2: (i) Initially, only the server S has a copy of the page. Machines that have
a copy of the page are shaded. The first request chooses a random leaf of the tree,
and is propagated to the root, where it encounters the copy of the page. (ii) The
page is then propagated down the tree, and the machines on the way save a copy.
(iii) The second requests again starts at a random leaf. After the request has gone up
and down the tree, more machines store copies of the page. Note that at this stage,
the server S will not get any more requests for the page since the two caches below
it already have copies. (iv) After a few more requests, more machines have cached
copies of the page. At this stage, no machines in the top two levels of the tree will
receive any more requests for the page; the cutoff level is already on the third level
of the tree.

84



Figure 3-3: Two random placement of 14 caches in trees for two different pages P1
and P2 (cache names here are numbers). Since the tops of the trees are small, the
probability that a specific cache is placed there is small. On the other hand, the
bottoms of the trees are large. Hence most caches are placed towards the bottom of
each tree.

the number of page requests grows more quickly than the power of available caching

machines; a scenario quite likely to occur.

3.1.3 A Solution - Random Trees

There is a simple modification to the tree scheme that solves the complication de-
scribed above. The basic idea is to use a different arrangement of the caches in the
tree for each different page. To gather intuition, assume that for each page we select
a random arrangement of caches in the tree. Figure 3-3 shows two arrangements of
14 caches for two different pages.

The problem with having a single arrangement of caches was that the caches at
the top of the tree get at least one request for every page. But, there are only a few
caches at the top of the tree. Therefore, if we arrange the caches randomly, a given
cache will most likely be placed low down in the tree (close to a leaf). So for most
pages a cache is found low in the tree, and only for a few pages the cache is located
in the top of the tree.

To understand how the new scheme prevents swamping, we give an intuitive argu-
ment that a given cache ¢ cannot be swamped in the extreme cases where swamping
could happen. First, if there are many requests for different pages for which c is in the
top of the trees, then ¢ would get a request for each such page. However, we argued

earlier that ¢ will be found in the top of only a small number of trees, so ¢ cannot be

85



swamped by such requests. The other extreme is that c is swamped by requests for
pages for which c is close to the bottom of the tree. If this is true, then there must
be a huge number of requests for such pages, since on the bottom levels of the tree
there are alot of caches, and requests are spread roughly equally between them by
the random choice of leaf in the protocol. So, if the number of total requests is not
outrageously high, ¢ cannot be swamped by such requests (if we make the request
rate high enough, any scheme will cause swamping).

In section 3.4 we prove that no matter how requests are distributed between pages
no cache will be swamped in the random trees protocol with high probability.

In the above discussion we have assumed that caches are arranged randomly in the
trees. However, it is clearly infeasible to distribute to all clients a randomly chosen
tree for every page on the Internet. In practice, we suggest to use a hash function to
assign caches to nodes in the tree.

As was discussed in chapter 2, standard hash functions are not suited for use
in caching applications on the Internet. Thus, in section 3.5 we show how to use
consistent hashing to distribute caches “randomly” in the trees. Even if clients have
different views of the set of caches, they will construct trees that are almost the same
for a given page. This “consistency” allows the random trees protocol to be used in
an environment such as the Internet.

The details of the random tree protccol are given in the following few sections.

3.2 Our Model

In this scction we describe the simplified model of the caching problem that we use
to design and analyze our algorithms. The objective is to define a model that both
captures some important details of the real model and also allows tractable analysis
or protocols. There is a tradeoff between details and tractable analysis and our
model falls clearly onto the tractable analysis side of the playing field. We hope,
however, that our model is sufficient to make the analysis relevant to a real world

implementation of the protocol.

86



3.2.1 Components

We classify computers on the Web into three categories. All requests for Web pages
are initiated by browsers. The permanent homes of Web pages are servers. Caches are
extra machines that we use to protect servers from the barrage of browser requests.
Throughout the remainder of the thesis, the set of caches is C and the number of
caches is C.

Each server is home to a fixed set of pages. Caches are also able to store a number
of pages, but this set may change over time as dictated by a caching protocol. We

assume that the content of each page is unchanging. The set of all pages is denoted
by P.

3.2.2 Types of Communication

There are two types of messages:

1. Requests for pages: A browser or cache can send a request for a page to a

cache or a server.

2. Page responses: Responses containing the data of a page can be sent by caches
or servers to browsers or caches. The machine sending the response must have
a copy of the page. At the start of the protocol, only the home server has a
copy of any page. All other copies need to be made from the home server by

requesting the page from the server, and receiving a page response.

3.2.3 Objective

We work with a static model of requests. That is defined as follows. At some time
T, there are a batch of requests that are issued by the browsers. We assume that the
number of requests is at most R = pC where C is the number of caches.

These requests are answered by some protocol that the browsers, caches and

servers run together. Say that at time T + ¢ all of the browsers that made requests

87



receive the data that they requested. At this time we count the total number of
requests that every cache and server have received.

The objective of the protocel is to answer all of the queries that the browsers
initiate while mlmmlzmg the total number of requests that any one cache or server
receives.

We assume that an adversary decides which pages are requested by browsers.
However, the adversary cannot see random values generated in our protocol and
cannot adapt his requests based on observed delays in obtaining pages. The idea is
then to show that the protocol, which will be randomized, prevents any machine from
getting too many requests with high probability.

While the basic requirement is to prevent swamping, we also have two additional
objectives. The first is to minimize cache memory requirements. That is, a protocol
should work well without requiring any cache to store a large number of pages. A
second objective is, naturally, to minimize the delay a browser experiences in obtaining

a page.

3.3 The Basic Random Trees Protocol

We associate with each page a rooted d-ary tree, called an abstract tree that will
represent the tree of caches for that page. We use the term nodes only in reference
to the nodes of these abstract trees. The number of nodes in each tree is equal to
the number of caches, and the tree is as balanced as possible (so all levels except
possibly the bottom level are full). We number the nodes of the tree by their rank in
breadth-first search order.

A request consists of 4 things packaged together:
o The identity of the requester
e The name of the desired page (i.e. the URI of the page)

e The numbers of the abstract nodes on a leaf-root path in the abstract tree

88



e The sequence of caches associated with the above leaf-root path for the partic-

ular page.

All of the above are easy to generate except for the last. In order to decide which
cache is responsible for a given abstract node n in the tree of page p, we use a hash
function of the form h: P x [1...C] — C, and compute h(p,n). The hash function
h needs to be distributed to all browsers and caches. The root of a tree is alway
mapped to the server for the page, that is we require that h(p,1) be the server for
the page p.

The actions of the three components of the system are as follows:

Browsers: When a browser requests a page, it picks a random leaf to root path in
the abstract tree, maps the nodes on the path to caching machines with the hash
function h and sends the request to the leaf node on the path. The request includes
the identity of the browser, the name of the page, the path nd the result of the

mapping from abstract nodes to actual caches.

Cache: When a cache receives a request, it first checks to see if it is caching a copy
of the page or is already waiting for a copy of the page. If so, it returns the page
to the requester (after it gets its copy if necessary). Otherwise, the cache increments
a local counter associated with the page and the abstract node the cache is acting
as, and forwards the request to the next machine on the path for the page. If the
counter reaches a threshold of g (where ¢ > 1 is set ahead of time), then it caches a
copy of the page when its request is answered. In any case, when the cache’s request

is answered, it forwards the data on to the requester.

Servers: When a server receives a request, it sends the requester a copy of the page.

The parameter ¢ controls how much storage each cache must have in order to
make the protocol work correctly. There is, however, a tradeoff betw - orage
requirements and preventing swamping. The larger q is, the less storage eacu cache
needs to have. However, if ¢ is large then caches and servers can recieve more requests

in the protocol. This is quantified in the following analysis of the protocol.

89



3.4 Analysis of the Random Tree Protocol

In this section we give a basic analysis of the performance of the protocol in our
simplified model of the problem. That is, there are a set of pC requests that are
made in a batch, and we measure the total number of requests that a server or cache
receives until all requests are answered. Many more details can be found in [7).

The analysis is broken into three parts. We begin by showing that the latency in
processing a request is likely to be small under the assumptions that no machine is
swamped, and that every machine can communicate with every other machine with
equal ease. We then show that the protocol prevents, with high probability, any
machine from being swamped. We then show that no cache needs to store too many
pages for the protocol to work properly.

In section 3.6 we explain how to take into account network topology and com-
munication times. However, until then we ignore this issue. More details of various

modification in the protocol are described in [7].

3.4.1 Latency

Since we are assuming that every cache can communicate with every other cache
with equal latency (different communication latencies are addressed in section 3.6),
the latency that any browser experiences when retrieving a page is determined by
the height of the tree. A request forwarded from a leaf node experiences latency no
more 2log, cC times the communication time between two machines. Note that if a
request stops at a cache that is waiting for a copy of the page, then another request
for the page has already been sent up the tree by that cache so the total latency is
no more than the stated amount.

The parameter d could be made large so that the tree is short. However, as the
analysis for swamping will show, there is a tradeoff between having a shallow tree
and preventing swamping.

One semi-practical point worth mentioning is that the time required to obtain a

large page need not be multiplied by the number of steps in the path if the caches

90



pipeline the data going through them. In other words, the hops through additional
caches increase the latency, but do not necessarily decrease the throughpat of the
system.

The following lemma shows that if you want to prevent swamping from occurring,

then you must introduce some additional latency into the system.

Lemma 1 Any protocol that can handle pC requests for a page simultaneously, with

no machine serving more than d requests, must have an average latency of at least

Q(logy(pC))-

Proof: Consider imaking pC requests for a single page. Look at the directed graph
with nodes corresponding to machines and directed edges corresponding to links over
which the page is sent. This graph has an out-degree of at most d at each node. So
the number of nodes reachable from the home server of the page in x steps is at most
d*. So a constant fraction of the nodes will be 2(log,(pC)) steps away from the home

server. This means that the average distance from the home server to the requesting

is Q(logy(sC)). ®

2.4.2 Swamping

We now analyze the number of requests a machine gets in our protocol in the simplified
static model. First, note that a server can receive at most d requests for any given
page. We assume that the server can handle this load for each of its pages.! What
remains is the analysis of the number of requests received by caches.

The intuition behind the analysis is the following. Note that there are two
“phases” of the randomness in the protocol. There is the random choice of leaf
node made by the browser, and then there is the random placement of caches in
abstract tree nodes that is done at the beginning by the hash function. Because of

this two stage process, we break the analysis into two stages. First we analyze the

If a server cannot cope with this load because it is the permanent site of a very large number of
documents, then we can modify the protocol in the following way. The root of ihe abstract tree is
mapped to a cache in the standard way and there is a second root above the actual root of the tree.
The permanent server takes the place of this new root node.

91



number of requests for each node in the abstract tree for each page. This involves
the randomness of the browser choosing the leaf node to start a request at. Then,
the number of requests for each abstract node is translated into a “weight” for each
abstract node. We then analyze how the caches are mapped into the abstract tree
nodes, this involves th randomness introduced by the hash function. We count the
total weight that is associated with each cache, and then show that each cache is
likely to actually receive a number of requests that is close to its associated weight.
We analyze the case that the hash function is a completely random function. In (7]

we show that the hash function can actually have limited independence.

Theorem 3.4.1 If h is chosen uniformly and at random from the space of functions
P x [1...C] > C then with probability at least | — 1/N, where N is a parameter, the

number of requests a given cache gets is no more than

p (2 log,C + O (IOI%NW)) +0 dqdlog N +log N
8108 log (7,9 log N)

requests

Note that plog, C is the average number of requests per cache since each browser
request will give rise to log, C requests up the trees. The l—(’)’gil’gg’vﬁ term arises because

at the abstract leaf nodes of a tree’s page some cache could occur %ﬁg—l\, times (balls-
in-bins) and if adversary chooses to devote all R requests to that page then cach leaf

is expected to receive p requests.

Corollary 3.4.2 If h is chosen uniformly and at random from the space of functions
P x[1...C] > C then with probability at least 1 — 1/N, where N is a parameter, no

no cache gets mor. (han

P (ZlogdC +0 (ﬁg-“v—c)—)) +o | —dalosVC) vy
loglog(NC) log (4 1og(NC))

requests

92



Proof: The bound given in theorem 3.4.1 holds for a given cache with probability at
least 1 — 1/N. Since there are C caches, the probability that the bound holds for all
caches is 1 — C/N. Since N is simply a parameter, we can replace N by NC to get

the corollary. ]

We prove theorem 3.4.1 in the rest of the section. We split the analysis into two
parts. I'irst we analyze the requests to a cache due to its presence in the leaf nodes
of the abstract trees and then analyze the requests due to its presence at the internal

nodes and then add them up.

Requests to Leaf Nodes

Each request for a page p goes to a random leaf node in that page’s abstract tree. If
L denotes the number of leaf nodes in each abstract tree, then L is about C(1—1/d).
We associate a weight of "2 with each abstract leaf node of p’s tree, which is the
number of requests for p each of them is expected to receive. Then we map these
weighted abstract leaf nodes over all pages onto the set of caches and bound the
total weight assigned to a cache. Finally we argue that the total number of requests
received by a cache is with high probability close to the total weight assigned to it.
Note that we cannot simply say that the requests are mapped randomly onto the set
of caches, which is different from mapping the requests to abstract nodes first and
then mapping the abstract nodes to the caches.

With each abstract leaf node of page p’s tree we associate a weight w, = r,/L.
A machine m has 1/C chance of being at an arbitrary leaf node of a given page.
Let V,; denote the event the j'* leaf node of p’s tree is assigned to m. So Vj; is
1 with probability 1/C and 0 otherwise. Let us try to bound to the total weight
W =3 w,V,; assigned to m. We would like to use Chernoff bounds; however, W is
a weighted sum of poisson variables with weights possibly greater than 1. But note
that each weight w, =r,/L < R/L < p/d(d — 1). So we can apply Chernoff bounds
to %, which is a weighted sum of poisson variables, where all weights are at most
1. This gives a bound of O(pleg N/loglog N) on W which holds with probability at
least 1 — 1/N.

93



Next we will argue that with high probability the number of leaf node requests
machine m gets is close to the random variable W. For any assignment of tree nodes
to machines let A denote set of leaf nodes that get assigned to m. Now observe
that the random variable W is a function of A. Let f denote this function. Let the
random variable H; denote the total number of requests received by machine m due
to its presence at leaf nodes. We need to provide a high probability bound for H,.

Let a denote the high probability bound on W that we just proved. Now we have:

Pr(H, > 8= PrlW > a]- Pr[H, > |W > q
+Pr[W < o] - Pr[H, > B|W < q]
< Pr[W > a]+ Pr[H, > B|f(A) < o]

We know that first probability in the sum is at most 1/N. We will choose 3
appropriately so that the second part of the sum is also < 1/N. Given the set of leaf
nodes where m is present we claim that the total number of requests R can be written
as a sum of independent poisson random variables. We have one poisson variable for
each request of each page which is set of 1 if m gets that request and 0 otherwise.
Now let u denote the expected value of their sum Then 1 = W < a. By Chernoff
bounds we know that the probability that the sum > 4-p+InNis < 1/N. So if we
set 3 to 4a +In N then the second probability is < 1/N. So we can claim that with
probability > 1 — 2/N the random variable H; is O(a + In N)

Requests to Internal Nodes

We will now bound the number of requests m gets due to its presence at internal
nodes. Again we think of the protocol as first running on the abstract trees. With
each abstract node we will associate a weight equal to the number of requests it
receives. These weighted nodes (balls) are then randomly assigned to the set of
caches (bins). Using standard balls-in-bins type analysis we will then bound the total
weight falling intc a bin.

Now no abstract internal node gets more than dq requests because each child node

94



gives out at most q requests for a page. Consider any arbitrary arrangement of paths
for all the R requests up their respective trees. Since there are only R requests in
all we can bound the number of abstract nodes that get dg requests. In fact we will
bound the number of abstract nodes over all trees that receive between 27 and 27+!
requests where 0 < gj < logdg — 1. Let n; denote the number of abstract nodes that
receive between 27 and 27*! requests. Let r, be the number of requests for page p.
Then Y 7, < R. Since each of the R requests gives rise to at most log, C' requests
up the trees, the total number of requests is no more than Rlog,C. So,

log(dg)~-1

Z 2'n; < Rlog,C (3.1)

j=0
The following lemma gives us a bound on n;.

Lemma 2 The total number of internal nodes that receive at least qr requests is at

most 2R/x if x > 1

Proof: Look at the r, requests for page p and the paths produced by these requests
up the tree. Consider the tree on the internal nodes induced by these paths. Since
any node can get at most ¢ requests from each child, a node that gets at least gz
requests must have downward degree of at least z > 1. Look at all nodes u with
downward degree one. Let v and w be the parent and the child of u respectively.
Replace all such downward degree one nodes u by a single edge connecting v and w.
This will eliminate all nodes with downward degree equal to one but will preserve
the degrees of the other nodes. Since z > 1, we are now left with a tree where each
node has a downward degree of at least 2. In such a tree the number of leaves is at
least half the total number of nodes. Also the sum of the downward degrees is equal
to the total number of edges, which is the same as the number of vertices minus 1.
The number of leaves in the tree is no more than the number of requests, which is
7p. So if there are y nodes with downward degree of at least z then zy < 2r, and so
y < 2rp,/z. Thus the total number of nodes over all trees which receive at least ¢z

requests is no more than 3 2r,/z = 2R/z. =

95



For z = 1 there can clearly be no more than Rlog,C requests. The preceding
lemma tells us that n;, the number of abstract nodes that receive between 2/ and 27+!
requests, is at most 25’5 except for j = 0. For j = 0, n; will be at most Rlog,C. Now
the probability that machine m assumes a given one of these n;j nodes is 1/C. Since
assignments of nodes to machines are independent the probability that a machine m
receives more than z of these nodes is at most ("/)(1/C)* < (en;/Cz)?. In order for

the right hand side to be as small as 1/N we can set z = QE + W%Tgiv—))‘ Note
(z;

that the latter term will be present only if f—] logN >2. So zis O(%L + N )

log( n—)— log N)
with probability at least 1 — 1/N.

So with probability at least 1 — log(dq)/N the total number of requests received

by m due to internal nodes will be of the order of

log(dg)—-1
gzq 9i+1 (ﬁ + &-)
e
= C log(n—j log N)
log(dg)—1 n log(dg)—1 log N
— 9i+1.J , 9+l !
]z:; C + 2‘ Iog(% log N)

=0

log(dgq)—1 log N
<2plog,C + Z i+l D8

=1
log N
log( £ log N)
log(dg)—-1
<2plog, C + Z 2i+1

=1

=2plog,C + O (

log( %’; log N)

log .V
log(; log N) +3j — 1

+2log N

dqlog N

——————— + log N
log(gpqlogN) 8 )

By combining the high probability bounds for internal and leaf nodes, we car say

that a machine gets

p(210g40+0(101—01g0—]%v->)+0 dqdlogN +log N
glog log(—p‘llogN)

96



requests with probability at least 1 — O('—°5N£1). Replacing N by N log(dg) in the

above expression and simplifying we get Theorem 3.4.1.

Tightness of the high probability bound In this section we show that the high
probability bound we have proven for the number of requests received by a machine

m is tight.

Lemma 3 There ezists a distribution of R requests to pages so that a given machine

m gets Q(plog, C + plo:’{i'gv 5+ log‘éfﬁ) : N)) requests with probability at least 1/N.

Proof: To show that the bounds are tight up to constant factors, we need only show
distributions that give rise to each of the terms.

If each of the R requests is made for a different page, then each one gives rise to
log,; C requests up their respective trees. So the total number of requests generated
will be Rlog, C and the expected number of requests received by m is plog, C. This
justifies the presence of the pleg, C term in the bound.

To justify the ﬁ%ﬂﬁ’ﬁ term, we let the adversary divide the R requests equally
among R/(d?q) pages so that each page gets d?q requests. Ry Chernoff bounds, with
probability ©(1) all the second level nodes in a particular one of these pages’ trees
receive §)(dq) requests. The probability that machine m is present at a given second
level node of a particular abstract tree is 1/C. The total number of second level
abstract nodes over all these trees is d - R/(d?q) = R/(dg) So the probability that m
is present at z of these f second level nodes is at least (F4D)(1/C)*(1—1/C)”lda-=,
To reduce this probability to 1/N, £ must be Q( 1og(l::1ﬂl!§'1§/°)')' A given second level

node of these pages is expected to receive dg requests. So with probability Q(1/N)

dqlog N
log(;‘l log N)

Finally, for the T%ﬁévﬁ term, we let the adversary devote all the R requests to one

machine m receives Q( ) requests.

hot page. Then since there are about C leaf positions, each leaf node gets p requests

in expectation. Also, with probability 1/, at least one machine will occupy —26_

loglog N
of these leaf positions and will receive O(%) requests in expectation. B

97



In [7] we show that the bound on the number of requests each cache receives also
holds if the hash function is chosen from a log N-way independent family. This makes

choosing and distributing the function much easier.

3.4.3 Storage

In this section, we discuss the amount of storage that each cache must have in order
to make the protocol work. Each cache needs to have space to store all the pages for
which it receives more than q requests. Each cache needs to maintain a counter for
each page that it receives a request for, however the storage required to maintain a
counter is small compared to the space required to actually store a copy of a whole
page. Thus, we ignore the space used by the counters and concentrate on the number
of actual pages that each cache has to store.

The following lemma bounds the total number of cached pages in the system and

in each cache.

Lemma 4 The total number of cached pgespages over all machines is O(log N + —?—)
with probability at least 1 — 1/N. A given cache has O("}—’lte + log N) cached pages

with probability at least 1 — +.

Thus, the number of cached copies is proportional to the number of requests R
and the constant of proportionality can be made arbitrarially small by choosing q to
be large. Also, note that p = R/C is the “average” number of requests per-cache, so
the p/q term in the expression for the number of cached pages makes sense.

The rest of this section is devoted to proving this lemma.

Proof:

We show that the total number of cached pages, over all abstract nodes is O(In N +
%) with probability at leat 1—1/N. From a standard balls-in-bins argument it follows
that with probability at least 1 — 1/N, the number of cached pages at a machine is
O(q% +logN) = 0'—‘3%“ +log N

We begin by studying the distribution of weights (storage counts) at the nodes of

a particular abstract tree. Consider the abstract tree T, for a given page p. Suppose

98



that there are r, requests for page p. For an abstract node at level [, the ezpected
number of requests that the node receives isr,/d'. This quantity droips by a factor
of d at every level. Thus, there is a certien level at which the expectation is at most
g/e and at least g/(ed). e call this the threshold level of the given page. We bound
the number of cached copies in two parts: the number above the threshold level and
the number below the threshold level.

Above the threshold level, we make the pessimistic assumption that ever abstract
node reveives g reqeusts and therefore caches the page. Since the number of nodes
per level is decreasing geometrically, the total number of nodes anywhere above the
threshold level is at most d/(d — 1) times the number of nodes at the level above the
threshold. By definition, the number of nodes at the threshold level for page p is at
most 7,e/q. Thus, the number of nodes above the threshold level is at most r,e/(gd)
and the total in all levels above is at most rpe/(g(d — 1)). Thusm the total number

of copies of all pages cached above their own thresholds is only:

e Re
2 @1 " {@-1

Our remaining task to is bound the number of cache copies at and below the
threshold level. To do this, we use a generating function argument for each level
separately. We begin with the threshold level. We look at the requests coming up
the tree at the threshold level as throwing r = r, balls (requests) into b = d' bins
(abstract nodes). A bin “matters” (caches a copy of the page) if it receives at least
g requests. Now, the probability that j bins receive at least ¢ balls is at most the

probability that some set of j bins receives a total of ¢j balls, which is at most:

99



| <
Q
S
8

f’?)(".)s . _)
\J qj ! \qb .
< Y ler)”
= 4t \qb
<E_Qw
- gl \ge
Y
< =
< G

We used the fact that at the threshold level, r/b < g/e.

Consider the generating function 3 ¢;z7 where @; is the probability that exactly
J bins get more than ¢ balls. We upper bounded ¢; in the above computation, so
we deduce that this generating function is upper bounded (term by term) by the
generating function for the above sequence, namely €**. From the fact that at the
threshold level r/b < ¢/e, we deduce that this function is upper bounded term by
term by e72. Now consider the probability generating function for the number of
threshold nodes over all pages that receive more than g requests. This is simply the
product of the PGFs for all the pages, and therefore is upper bounded by the product

of the generating functions given above, namely:

Next, we consider the level below the threshold. This level has d times as many
nodes, so the expected number of requests per machine drops by a factor of d. What
impact does this have on the above analysis? We use the expectation in only one place
- where we replaced /b by g/e. At one level below the threshold, we can replace /b
by g/(ed). We then continue with the same analysis as before and get a bound of eei®

on the probability generating function provided that ¢ > 2. Similarly, at two levels

100




Re
below the threshold, the probability generating function is bounded by e**, and so
on. So, the probability generating function for the total number of abstract nodes

over all pages below threshold levels that receive more than ¢ requests is bounded by:

Re Re
I I edqu — e):izo dlqz

i>0

It follows that the probability that there are more than j cache copies at threshold

i (%) .

levels is at most:

This quantity is 1/N when:
j=O0(nN + -?—)

So, we have shown that with probability at least 1 — 1/N the number of cached
pages at threshold levels and below is O(In N + &.

3.5 Using Consistent Hashing

So far, we have described the random tree protocol in a situation wherz every machine
knows about the existence of every other machine and that machines never malfunc-
tion. This is clearly not the case on the Internet. The component of the protocol that
is sensitive to having changing and incomplete information about the set of caches is
the hash function h.

Clearly, it is important that two browsers agree on how caches are distributed in
a tree for a given page. However if we use standard hashing techniques and two users
have different views of the caches, the trees that they bu:ld for the same page are

completely different. In order to overcome this difficulty, we can use the consistent

101



hash functions that we develop in the previous chapter. We assume that each browser
knows about at least a 1/t fraction of the caches, however this set can be chosen by
an adversary. There is no difference in the protocol, except that the mapping h is a
consistent hash function.

This change will not affect latency. Therefore, we only analyze the effects on
swamping and storage. The basic properties of consistent hashing are crucial in
showing that the protocol still works well. In particular, the blowup in the number
of requests and storage is proportional to the spread and load of the hash function.

A complete analysis of the resulting protocol is presented in [7].

3.6 Ultrametric

The assumption that every pair of machines can communicate with equal ease is
obviously unrealistic, and we show how to adapt our protocol to a more realistic
model in this section.

Recall that a request by machine m, for page p from machine m, has three stages:
m, asks for the page from m,, m, obtains the page, and m, returns the page to m;.
For example, a browser sends a page request to a cache, the cache obtaines the page
by forwarding the request to another cache or server, and then the cache returns the
page to the user. The latency of the page request is defined to be the duration of all
three stages. The duration of the first and third stages is a function of the ease of
communication betweer m; and ms.

Modeling communication between machines on the Internet is tricky. The Internet
communications protocol, TCP/IP, gives no formal guarantee on the time to pass a
message between two machines. Empirically, this time can vary considerably due to
network congestion and changes in routing hardware. However, by compiling statistics
on past communications, one may obtain a reasonably accurate “typical” time to pass
a packet between machines. In addition, information maintained by routers can be
useful in deriving estimates on communication speeds.

We assume that such typical communication times are available. In particular, if

102



machine m; requests a page from machine m,, then let the duration of the first and
third stages of the page request be given by é(m;, m;). Furthermore, we assume that
machine m; knows é(m,, m,) for any machine m,. But it may not know the distance
d(ma, m3) between two other machines, say m, and m3. Thus the storage required
for this information is linear in the number of machines.

The latency of & page request can now be expressed in terms of §. For example,
if a browser b requests a page from a cache ¢ and the cache forwards the request to
the server s, then the latency of the page request is §(b, c) + 4(c, s).

We extend our protocol to a restricted class of functions 4. In particular, we
assume that 4 is an ultrametric. Formally, an ultrametric is a metric which obeys a
more strict form of the triangle inequality: d(a,c) < max(d(a,b), (b, c)).

The ultrametric is a natural model of internet distances, since it essentially cap-
tures the hierarchical nature of the internet topology, under which, for example, all
machines in a given university are equidistant, but all of them are farther away from
another university, and still farther from another continent. The logical point-to-
point connectivity is established atop a physical network, and it is generally the case
that the latency between two sites is determined by the “highest level” physical com-
munication link that must be traversed on the path between them. Indeed, another
definition of an ultrametric is as a hierarchical clustering of the points. The distance
between two points depends only on which is the smallest cluster containing both.
Thus, for example, the distance between any two machines at the same university is
less than the distance between any two machines at different universities in the same
country.

In addition to modeling communication latency, ultrametrics are also good models
of the throughput between two machines. For large pages, maximizing throughput is
more important than minimizing latency. Throughput is typically determined by the
maximum-congestion (physical) communication link on the path implementing the
virtual point-to-point connection between two machines and is therefore an ultramet-

ric.

103



3.6.1 Protocol

The only modification we make to the protocol is the following: When a browser
needs a page p it only uses the caches that are no further away than the server for
the page. The size of the abstract tree is now equal the the number of caches within
the distance to the server. By doing this, we insure that our path to the server does
not contain any caches that are unnecessarily far away in the metric. The mapping
is done using a consistent hash function, which is the vital element of the solution.

Clearly, requiring that browsers use “nearby” caches can cause swamping if there
is only one cache and server near many browsers. Thus, in order to avoid cases of
degenerate ultrametrics where there are browsers that are not close to any cache, and
where there are clusters in the ultrametric without any caches in them, we restrict the
set of ultrametrics that may be presented to the protocol. The restriction is that in
any clusier the ratio of the number of caches to the number of browsers may not fall
below 1/p (recall that R = pC).For the sake of analysis this restriction is equivalent
to imagining that the requests originate at the caches where each cache is allowed to
make at most p requests. This restriction makes sense in the real world where caches
are likely to be evenly spread out over the Internet. It is also necessary, as it is clear
that a large number of browsers clustered around one cache can be forced to swamp
that cache if we use our modified protocol.

It is clear from the protocol and the definition of an ultrametric that the latency
will be no more than the depth of the tree, log, C, times the latency between the
browser and the server. So once again we need only look at swamping and storage.
The intuition is that inside each cluster the bounds we proved for the unit distance
model apply. The monotone property on consistent hashing allows us to restrict our
analysis to log(C) clusters. Thus, summing over these clusters we have only a log(C)

blowup in the bound. Details are given in [7].

104




Chapter 4

Conclusion

We have introduced two algorithmic tools for caching in distributed networks; consis-
tent hashing and random trees. Consistent hashing has been developed and analyzed
in a general setting because we believe that there are many other applications that
can benefit from the construction. Random trees were introduced and motivated and
some basic analysis was presented. More detailed analysis appear in [7].

There are both practical and theoretical questions that are left open. We have
presented a basic architecture of a caching scheme for the web. On the practical side,
this leaves open the possibility of designing real systems based on our algorithms. In
particular, it remains to see how well the random tree protocol behaves in a setting
where requests are not sent in a batch, but are a continuous stream. In addition, it
remains to see how well the ultrametric model fits what is really happening on the
Internet, and whether the modified tree protocol works well in practice.

On the theoretical side, there are a number of questions that remain open. Can one
prove lower bounds or better upper bounds on the number of permutations that need
to be used to construct uniform monotone hash function? Are there other efficient
implementations of consistent hash functions other than the circle hash function. Are
there other models of network topology that admit tractable analysis of the random

tree protocol?

105



Bibliography

[1]

[2]

3]

[4]

[5]

[6]

[7]

Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Com-

puting, El Paso, Texas, 4-6 May 1997.

J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions.

Journal of Computer and System Sciences, 18(2):143-154, April 1979.

Anawat Chankhunthod, Peter Danzig, Chuck Neerdaels, Michael Schwartz, and
Kurt Worrell. A hierarchical internet object cache. USENIX Proceedings, July
1996.

H. Chernoff. A measure of the asymptotic efficiency for tests of a hypothesis
based on the sum of cbservations. In Annals of Mathematical Statistics (23),

pages 493-509, 1952.

Sally Floyd, Van Jacobson, Steen McCanne, Ching-Gung Liu, and Lixia Zhang.
A reliable multicast framework for light-weight sessions and application level

framing. In Proceedings of SIGCOMM 95, 1995.

Michael L. Fredman, Janos Komlés, and Endre Szemerédi. Storing a sparse table

with O(1) worst case access time. Journal of the ACM, 31(3):538-544, July 1984.

David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel Lewin,
and Rina Panigrahy. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the World Wide Web. In ACM [1], pages
654-663.

106




(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

D.E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Program-
ming. Addison-Wesley, Reading, MA, 1973.

Ulana Legedza and John Guttag. Using network level support to improve cache

routing. In 3rd International WWW Caching Workshop, 1998.

Ari Luitonen and Kevin Altis. World-wide web proxies. Computer Networks and
ISDN systems, First International Conference on the World-Wide Web, July
1994.

Radhika Malpani, Jacob Lorch, and David Berger. Making world wide web
caching servers cooperate. Proceeings of the World Wide Web Conference, July

1996.

Moni Naor and Omer Reingold. On the construction of pseudo-random permu-

tations: Luby-Rackoff revisited (extended abstract). In ACM [1], pages 189-199.

Noam Nisan. Psuedorandom generators for space-bounded computation. In
Proceedings of the Twenty Second Annual ACM Symposium on Theory of Com-
puting, pages 204-212, Baltimore, Maryland, 14-16 May 1990.

Katia Obraczka, Peter Danzig, Solos Arthachinda, and Muhammad Yousuf. Scal-
able, highly availiable web caching. In NLANR Web cache workshop, 1997.

C. Greg Plaxton and Rajmohan Rajaraman. Fast fault-tolerant oncurrent access
to shared objects. In 87th Annual Symposium on Foundations of Computer

Science, pages 570-579, Burlington, Vermont, 14-16 October 1996. IEEE.

Dean Povey and John Harrison. A distributed internet cache. In Proceedings of

the 20th Australian Computer Science Conference, 1997.

Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-Hoeffding
bounds for applications with limited independence. In Proceedings of the Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 331-340, Austin,
Texas, 25-27 January 1993.

107



(18] R. Sprugnoli. Perfect hashing functions: A single probe retrieving method for
static sets. Communications of the ACM, 21(11):606-611, December 1979.

[19] R.E. Tarjan and A. Yao. Storing a sparse table. Communications of the ACM,
22:606-611¢, July 19879.

[20] Zheng Wang and Jon Crowcroft. Cachemesh: A distributed cache system for the
world wide web. In NLANR Web cache workshop, 1997.

[21] Mark N. Wegman and J. Lawrence Carter. New hash functions and their use
in authentication and set equality. Journal of Computer and System Sciences,

22(3):265-279, June 1981.

[22] Andrew Chi-Chih Yao. Should tables be sorted? Journal of the ACM, 28(3):615-
628, July 1981.

(23] Lixia Zhang, Sally Floyd, and Van Jacobson. Adaptive web caching. In NLANR
Web cache workshop, 1997.

108




Chapter 5

Appendix A

5.0.2 Chernoff Bounds

Chernoff bounds are bounds on large deviations that are very useful in many situations
involving sums of indicator variables. Most of the results in this appendix can be
found, or immediately derived from, the seminal paper of H. Chernoff [4].

The basic result is:

Theorem 5.0.1 Let X,, Xo,..., X, be independent Bernoulli variables such that for
1<i<n Pr[X;=1]=p; where 0 < p; <1 then for X =3, Xi, p = E[X] =
> i pi we have:

» p
1. For§>0, Pr[X > (1 + )y < [(—lm)"m]
2. For0<6<1,PriX <(1-6)u]l< 5
Following are a number of simplifications of the first case that come in handy.

Corollary 5.0.2 With the same conditions as theorem 5.0.1:

52

1. For0<6<2—1,Pr[X > (1+8)u] < et

(14+8)p _ (48
3 4

2. For6>2—1,Pr[X > (1+6)p] <270+ < e <e

In addition we have:

109



Corollary 5.0.3 With the same conditions as theorem 5.0.1:

Pr|X — p| > p) < 275

110




